Supppose the orbit of a satellite is exactly 35,780 km above the earth 's surface. Determine the tangential velocity of the satellite
Answers
Answered by
23
Here's the answer
We know the following values =>
![\bf{G = 6.673 \times 10 {}^{ - 11} Nm^2 / kg ^2} \bf{G = 6.673 \times 10 {}^{ - 11} Nm^2 / kg ^2}](https://tex.z-dn.net/?f=+%5Cbf%7BG+%3D+6.673+%5Ctimes+10+%7B%7D%5E%7B+-+11%7D+Nm%5E2+%2F+kg+%5E2%7D)
Mass of earth =![\bf { 6 \times 10 ^24 km } \bf { 6 \times 10 ^24 km }](https://tex.z-dn.net/?f=+%5Cbf+%7B+6+%5Ctimes+10+%5E24+km+%7D)
Radius of the earth =![\bf { 6400 km = 6400000 m } \bf { 6400 km = 6400000 m }](https://tex.z-dn.net/?f=+%5Cbf+%7B+6400+km+%3D+6400000+m+%7D+)
h = height of the satellite above the Earth's suface 35780 km = 35780000 m
To find => v = ?
Solution =>
We know the formula ..
![\bf{v = \sqrt{ \frac{GM}{ R \: + h} } } \bf{v = \sqrt{ \frac{GM}{ R \: + h} } }](https://tex.z-dn.net/?f=+%5Cbf%7Bv+%3D+%5Csqrt%7B+%5Cfrac%7BGM%7D%7B+R+%5C%3A+%2B+h%7D+%7D+%7D+)
![\sf{v = \sqrt{ \frac{6.67 \times 10 {}^{ - 11 } \times 6 \times 10 {}^{24} }{357800000 + 6400000}} } \sf{v = \sqrt{ \frac{6.67 \times 10 {}^{ - 11 } \times 6 \times 10 {}^{24} }{357800000 + 6400000}} }](https://tex.z-dn.net/?f=+%5Csf%7Bv+%3D+%5Csqrt%7B+%5Cfrac%7B6.67+%5Ctimes+10+%7B%7D%5E%7B+-+11+%7D+%5Ctimes+6+%5Ctimes+10+%7B%7D%5E%7B24%7D+%7D%7B357800000+%2B+6400000%7D%7D+%7D+)
![\sf{v = \sqrt{ \frac{40.02 \times 10 {}^{13} }{42180000}} } \sf{v = \sqrt{ \frac{40.02 \times 10 {}^{13} }{42180000}} }](https://tex.z-dn.net/?f=+%5Csf%7Bv+%3D+%5Csqrt%7B+%5Cfrac%7B40.02+%5Ctimes+10+%7B%7D%5E%7B13%7D+%7D%7B42180000%7D%7D+%7D+)
![\sf{v = \sqrt{ \frac{40.02 \times 10 {}^{13} }{42.18 \times 10 {}^{6}} } } \sf{v = \sqrt{ \frac{40.02 \times 10 {}^{13} }{42.18 \times 10 {}^{6}} } }](https://tex.z-dn.net/?f=+%5Csf%7Bv+%3D+%5Csqrt%7B+%5Cfrac%7B40.02+%5Ctimes+10+%7B%7D%5E%7B13%7D+%7D%7B42.18+%5Ctimes+10+%7B%7D%5E%7B6%7D%7D+%7D+%7D+)
![\sf{v = \sqrt{ \frac{40 \times 10 {}^{7} }{42}}} \sf{v = \sqrt{ \frac{40 \times 10 {}^{7} }{42}}}](https://tex.z-dn.net/?f=+%5Csf%7Bv+%3D+%5Csqrt%7B+%5Cfrac%7B40+%5Ctimes+10+%7B%7D%5E%7B7%7D+%7D%7B42%7D%7D%7D+)
![\sf{v = \sqrt{ \frac{0.95 \times 10 {}^{7} }{9.5 \times 10 {}^{6}} } } \sf{v = \sqrt{ \frac{0.95 \times 10 {}^{7} }{9.5 \times 10 {}^{6}} } }](https://tex.z-dn.net/?f=+%5Csf%7Bv+%3D+%5Csqrt%7B+%5Cfrac%7B0.95+%5Ctimes+10+%7B%7D%5E%7B7%7D+%7D%7B9.5+%5Ctimes+10+%7B%7D%5E%7B6%7D%7D+%7D+%7D+)
![\sf{v = 3.08 \times 10 {}^{3} m/s} \sf{v = 3.08 \times 10 {}^{3} m/s}](https://tex.z-dn.net/?f=+%5Csf%7Bv+%3D+3.08+%5Ctimes+10+%7B%7D%5E%7B3%7D+m%2Fs%7D)
![\bf {\therefore v = 3.08 \: km/s} \bf {\therefore v = 3.08 \: km/s}](https://tex.z-dn.net/?f=+%5Cbf+%7B%5Ctherefore+v+%3D+3.08+%5C%3A+km%2Fs%7D)
Final answer =>
We know the following values =>
Mass of earth =
Radius of the earth =
h = height of the satellite above the Earth's suface 35780 km = 35780000 m
To find => v = ?
Solution =>
We know the formula ..
Final answer =>
Anonymous:
Perfect! Although understood nothing...xD
Similar questions