Math, asked by 19aadee, 1 year ago

t^2 + 78/5 t + 42 = 0​

Answers

Answered by vuma232006
1

Answer:

t=−3.4594931171578596,−12.14050688284214

explanation:

by applying quadratic equation formula

∆=-b±√(b^2-4ac)/2a

and by subtituting it we get t=−3.4594931171578596,−12.14050688284214

Answered by hukam0685
1

Answer:

 t_1 =  \frac{ - 39 + \sqrt{ 471 } }{5} \\  \\ t_2 = \frac{ - 39  - \sqrt{ 471 } }{5} \\

Step-by-step explanation:

To solve the Quadratic equation,first simply it by taking LCM

 {t}^{2}  +  \frac{78}{5} t + 42 = 0 \\  \\  \frac{5 {t}^{2}  + 78t + 210}{5}  = 0 \\  \\ 5 {t}^{2}  + 78t + 210 = 5 \times 0 \\  \\ 5 {t}^{2}  + 78t + 210 = 0 \\  \\

On inspection it is clear that it's factors are not possible.So,apply Quadratic formula.

t_{1,2}=  \frac{ - b ±  \sqrt{ {b}^{2} - 4ac } }{2a}  \\  \\ here \: a = 5 \\ b = 78 \\ c = 210 \\  \\ t_{1,2} =  \frac{ - 78 ±  \sqrt{ {(78)}^{2} - 4 \times 5 \times 210 } }{2 \times 5}  \\ \\ t_{1,2} =  \frac{ - 78 ±  \sqrt{ 6084- 4200 } }{10} \\  \\   t_{1,2} =  \frac{ - 78 ± \sqrt{ 1884 } }{10} \\  \\t_{1,2} =  \frac{ - 78 ± 2\sqrt{ 471 } }{10} \\  \\   t_1 =  \frac{ - 39 + \sqrt{ 471 } }{5} \\  \\ t_2 = \frac{ - 39  - \sqrt{ 471 } }{5} \\  \\

Hope it helps you.

Similar questions