Math, asked by Yashkkkkk, 11 months ago

t^5 * 6^2* 2^5 / t^2 *3^3* 2^2 solve the following exponential problem

Answers

Answered by williamthegamer2008
0

i cant, you need to put what *t* means

¯\_(ツ)_/¯

Answered by sanketj
1

 \:  \:  \:  \:  \:  \frac{ {t}^{5}  \times  {6}^{2}  \times  {2}^{5} }{ {t}^{2}  \times  {3}^{3} \times  {2}^{2}  }  \\  = \frac{ {t}^{5}  \times  {(2 \times 3)}^{2}  \times  {2}^{5} }{ {t}^{2}  \times  {3}^{3} \times  {2}^{2}  } \\  = \frac{ {t}^{5}  \times  {2}^{2} \times  {3}^{2}   \times  {2}^{5} }{ {t}^{2}  \times  {3}^{3} \times  {2}^{2}  } \:  \:  \:  ... \:  {(ab)}^{m}  =  {a}^{m}  {b}^{m}  \\  =  \frac{ {t}^{5} \times  {3}^{2}  \times  {2}^{2 + 5}  }{ {t}^{2} \times  {3}^{3}   \times  {2}^{2} }  \:  \:  \: ... \: ( {a}^{m } . {a}^{n}  =  {a}^{m + n} ) \\  =  {t}^{5 - 2}  \times  {3}^{2 - 3}  \times  {2}^{2 + 5 - 2}  \:  \:  \: ...(  \frac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n} ) \\  =  {t}^{3}  \times  {3}^{ - 1}  \times  {2}^{5} \\  =  \frac{ {t}^{3}  \times  {2}^{5} }{3}   \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: ... \: ( {a}^{ - 1}  =  \frac{1}{a})  \\  =  \frac{ {t}^{3} \times 32 }{3}  \\  =  \frac{32 {t}^{3} }{3}

Similar questions