Chemistry, asked by ramneetgill28, 3 months ago

t1/2 of a first order reaction is 75 min. Calculate time in which 75% of the reaction will take place​

Answers

Answered by mauryasangita716
1

Explanation:

Answer is 109.4 minutes

Attachments:
Answered by MagicalBeast
15

Given :

Half life of first order reaction = 75 minutes

To find :

Time in which 75% of reaction is completed

Formula used :

\sf \: k \times t \:  =  \:  ln( \dfrac{a}{a - x} )

Here,

k = rate constant

t = time

a = initial concentration

x = amount of reaction complete

Solution:

First of all we will find rate constant of reaction

Part 1)

Half life = 75min

a = a

x = (a/2)

\sf \implies \: k  \times  t_{ \frac{1}{2} } =  ln( \dfrac{a}{a -  \frac{a  }{2} } )  \\  \\ \sf \implies \: k  \times \: t_{ \frac{1}{2} } \:  =  \:  ln( \dfrac{a}{ \frac{2a - a}{2} } )  \\  \\ \sf \implies \: k  \times \: t_{ \frac{1}{2} } \:  =  \: ln( \dfrac{a}{ \frac{a}{2} } )  \\  \\ \sf \implies \: k  \times \: t_{ \frac{1}{2} } \:  =  \: ln( \dfrac{2a}{a} )  \\  \\ \sf \implies \: k  \times \: t_{ \frac{1}{2} } \:  =  \: ln(2)  \\  \\ \sf \implies \: k \: =  \: \dfrac{1}{t_{ \frac{1}{2} }}  \times  ln(2)  \\  \\ \sf \implies \: k \: =  \: \dfrac{ \:  \:  ln(2) \:  }{t_{ \frac{1}{2} }} \:  \:  \: \:  \:  \:  \: equation \: 1

Part 2)

t = find

a = a .... let

x = 75% of a = (3/4)a

\sf \implies \: k  \times \:  t_{ \frac{3}{4} }  \:  =  \: ln( \dfrac{a}{a -  \frac{3a}{4} } )  \\  \\ \sf \implies \: k  \times \:  t_{ \frac{3}{4} }  \:  =  \: ln( \dfrac{a}{ \frac{(4a) - (3a)}{4} } )  \\  \\ \sf \implies \: k  \times \:  t_{ \frac{3}{4} }  \:  =  \: ln( \dfrac{a}{  \frac{a}{4}  } )  \\  \\ \sf \implies \: k  \times \:  t_{ \frac{3}{4} }  \:  =  \: ln( \dfrac{4a}{a} )  \\  \\ \sf \implies \: k  \times \:  t_{ \frac{3}{4} }  \:  =  \: ln(4)  \\  \\ \sf \implies \: k  \times \:  t_{ \frac{3}{4} }  \:  =  \:2( \:  ln(2) \:  ) \\   \\ \sf \: put \: value \: of \: k \: from \: equation \: 1 \\    \sf \implies \: \: \dfrac{ \:  \:  ln(2) \:  }{t_{ \frac{1}{2} }} \:  \times \:  t_{ \frac{3}{4} }  \:  =  \:2( \:  ln(2) \:  ) \\  \\  \sf \implies \:t_{ \frac{3}{4} }  \: =  \: 2 \times  ln(2)  \times  \dfrac{ t_{ \frac{1}{2} }  }{ ln(2) }   \\  \\ \sf \implies \: \bold{t_{ \frac{3}{4} }  \: = \:  2 \times t_{ \frac{1}{2}}} \\  \\  \sf \implies \:  \: t_{\frac{3}{4}} \:  =  \: 2 \times 75 \: min \\  \\ \sf \implies \:  \: t_{\frac{3}{4}} \:  =  \:  \:  \bold{150  \: min}

ANSWER : 150 minutes

Similar questions