Table-tennis ball has a mass 10 g and a speed of 90 m/s. If speed can be measured within an accuracy of 4% what will be the uncertainty in speed and position?
Answers
"Heisenberg Uncertainty principle:
It is fundamentally impossible to know precisely both the velocity and the position of a particle at the same time.
From the given,
"
Explanation:
Heisenberg Uncertainty principle:
It is fundamentally impossible to know precisely both the velocity and the position of a particle at the same time.
\Delta x.\Delta p\quad \ge \quad \frac { h }{ 4\pi }Δx.Δp≥
4π
h
\Delta x\quad =\quad Uncertainty\quad of\quad positionΔx=Uncertaintyofposition
\Delta p\quad =\quad Uncertainty\quad of\quad momentumΔp=Uncertaintyofmomentum
From the given,
Mass\quad of\quad ball\quad =\quad 4\quad gMassofball=4g
Speed\quad =\quad 90\quad m/sSpeed=90m/s
\Delta \upsilon \quad =\quad \frac { 4 }{ 100 } \quad \times \quad 90\quad =\quad 3.6Δυ=
100
4
×90=3.6
\Delta x\quad =\quad \frac { h }{ 4\pi m\Delta v }Δx=
4πmΔv
h
=\quad \frac { 6.626\quad \times { \quad 10 }^{ -34 } }{ 4\quad \times \quad 3.14\quad \times \quad 10\quad \times \quad { 10 }^{ -3 }\quad \times \quad 3.6 }=
4×3.14×10×10
−3
×3.6
6.626×10
−34
\Delta x\quad =\quad 1.46\quad \times \quad { 10 }^{ -33 }\quad mΔx=1.46×10
−33
m "