Taking A = 30°, verify that
(i) cos4 A - sin4 A = cos 2A
(ii) 4 cos A cos (60° - A) cos (60° + A) = cos 3A.
Answers
Answered by
71
EXPLANATION.
Taking A = 30°.
(1) = Cos⁴A - Sin⁴A = Cos 2A.
Put the value of A = 30°.
→ Cos⁴(30°) - Sin⁴(30°) = Cos 2(30°).
→ ( √3/2)⁴ - ( 1/2)⁴ = Cos 60°.
→ 9/16 - 1/16 = Cos 60°.
→ 8/16 = Cos 60°.
→ 1/2 = 1/2. = Proved.
(2) = 4 Cos A Cos ( 60° - A) Cos ( 60° + A) =
Cos 3A.
→ put the value of A = 30° in equation.
→ 4 Cos (30°) Cos ( 60° - 30° ) Cos ( 60° + 30°)
= Cos 3(30°).
→ 4 ( √3/2) Cos ( 30°) Cos ( 90°) = Cos 90°.
→ 2√3 X √3/2 X 0 = 0.
→ 0 = 0 = Proved.
Answered by
54
cos⁴A - sin⁴A = cos2A
cos⁴30 - sin⁴30 = cos2(30)
cos⁴30 - sin⁴30 = cos60
4cosA . cos(60 - A)cos(60+A) = cos3A
4cosA . cos(60-30)cos(60+30) = cos3(30)
4cosA . cos30 . cos90 = cos90
ㅤㅤㅤㅤㅤㅤㅤ[cos 90 = 0]
Similar questions