Math, asked by varennyapophali, 3 months ago

Taking A = 30°, verify that
(i) cos4 A - sin4 A = cos 2A
(ii) 4 cos A cos (60° - A) cos (60° + A) = cos 3A.​

Answers

Answered by amansharma264
71

EXPLANATION.

Taking A = 30°.

(1) = Cos⁴A - Sin⁴A = Cos 2A.

Put the value of A = 30°.

→ Cos⁴(30°) - Sin⁴(30°) = Cos 2(30°).

→ ( √3/2)⁴ - ( 1/2)⁴ = Cos 60°.

→ 9/16 - 1/16 = Cos 60°.

→ 8/16 = Cos 60°.

→ 1/2 = 1/2. = Proved.

(2) = 4 Cos A Cos ( 60° - A) Cos ( 60° + A) =

Cos 3A.

→ put the value of A = 30° in equation.

→ 4 Cos (30°) Cos ( 60° - 30° ) Cos ( 60° + 30°)

= Cos 3(30°).

→ 4 ( √3/2) Cos ( 30°) Cos ( 90°) = Cos 90°.

→ 2√3 X √3/2 X 0 = 0.

→ 0 = 0 = Proved.

Answered by Anonymous
54

 \large\sf\underline{ \underline{ \red{solution : }}} \\  \\

 \huge \boxed{ \sf{(i)}}

cos⁴A - sin⁴A = cos2A

cos⁴30 - sin⁴30 = cos2(30)

cos⁴30 - sin⁴30 = cos60

   \\  \sf{  {( \frac{\sqrt{3} }{2} )}^{4}  -  { (\frac{1}{2} )}^{4}   =\frac{1}{2}     } \\  \\  \\  \sf{ \frac{9}{16} -  \frac{1}{16}   =  \frac{1}{2}   } \\  \\  \\  \sf{ \frac{  \cancel{{8}} \:  \: ^{1} }{ \cancel {16} \:  \: ^{2} } } =  \frac{1}{2}  \\  \\  \\  \implies \sf{ \frac{1}{2}  =  \frac{1}{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \pink{verified}}

 \\  \\  \huge \boxed{ \sf{(ii)}} \\  \\

4cosA . cos(60 - A)cos(60+A) = cos3A

4cosA . cos(60-30)cos(60+30) = cos3(30)

4cosA . cos30 . cos90 = cos90

ㅤㅤㅤㅤㅤㅤㅤ[cos 90 = 0]

 \sf{0 = 0} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \pink{verified}

Similar questions