Taking A= (6.00i–8.00j) units,B= (-8.00i+3.00j) units, and C= (26.0i+ 19.0j)units, determine a and b such that aA + Bb + C = 0.
Answers
Explanation:
aA=(6. 00ai-8.00aj)
bB=(-8.00bi+3.00bj)
aA+bB=[(6.00a-8.00b)i+(3.00b-8.00a)j]
aA+bB+C=[(6a-8b+26)i+(3b-8a+19)j]
aA+bB+C=0
So 6a-8b=(-26)
3a-4b=(-13) multiply it by 8 we get
24a-32b=(-104) - (equation 1)
Equating coefficient of j=0 we get
3b-8a=(-19) multiplying it by 3 we get
9b-24a=(-57) -(equation 2)
Adding equation 1 and 2 we g we get
-23b=(-161)
So b=7
Putting value of b in any one of the equation we get a=5
Answer:
A = 5 and B = 7
Explanation:
aA=(6. 00ai-8.00aj)
bB=(-8.00bi+3.00bj)
aA+bB=[(6.00a-8.00b)i+(3.00b-8.00a)j]
aA+bB+C=[(6a-8b+26)i+(3b-8a+19)j]
aA+bB+C=0
So 6a-8b=(-26)
3a-4b=(-13) multiply it by 8 we get
24a-32b=(-104) - (equation 1)
Equating coefficient of j=0 we get
3b-8a=(-19) multiplying it by 3 we get
9b-24a=(-57) -(equation 2)
Adding equation 1 and 2 we g we get
-23b=(-161)
So b=7
Putting value of b in any one of the equation we get a=5