Math, asked by vaishnavikasar80, 4 months ago

tan 0+ sin 0/tan 0-sin 0
prove: sec0+1/sec0 -1​

Answers

Answered by varadad25
4

Question:

Prove that:

\displaystyle{\sf\:\dfrac{\tan\:\theta\:+\:\sin\:\theta}{\tan\:\theta\:-\:\sin\:\theta}\:=\:\dfrac{\sec\:\theta\:+\:1}{\sec\:\theta\:-\:1}}

Answer:

\displaystyle{\boxed{\red{\sf\:\dfrac{\tan\:\theta\:+\:\sin\:\theta}{\tan\:\theta\:-\:\sin\:\theta}\:=\:\dfrac{\sec\:\theta\:+\:1}{\sec\:\theta\:-\:1}}}}

Step-by-step-explanation:

We have given a trigonometric equation.

We have to prove that equation.

Now,

\displaystyle{\sf\:\dfrac{\tan\:\theta\:+\:\sin\:\theta}{\tan\:\theta\:-\:\sin\:\theta}\:=\:\dfrac{\sec\:\theta\:+\:1}{\sec\:\theta\:-\:1}}

\displaystyle{\sf\:RHS\:=\:\dfrac{\sec\:\theta\:+\:1}{\sec\:\theta\:-\:1}}

\displaystyle{\implies\sf\:RHS\:=\:\dfrac{\dfrac{1}{\cos\:\theta}\:+\:1}{\dfrac{1}{\cos\:\theta}\:-\:1}\:\:\:-\:-\:-\:\left[\:\because\:\sec\:\theta\:=\:\dfrac{1}{\cos\:\theta}\:\right]}

\displaystyle{\implies\sf\:RHS\:=\:\dfrac{\dfrac{1\:+\:\cos\:\theta}{\cos\:\theta}}{\dfrac{1\:-\:\cos\:\theta}{\cos\:\theta}}}

\displaystyle{\implies\sf\:RHS\:=\:\dfrac{1\:+\:\cos\:\theta}{\cancel{\cos\:\theta}}\:\times\:\dfrac{\cancel{\cos\:\theta}}{1\:-\:\cos\:\theta}}

\displaystyle{\implies\sf\:RHS\:=\:\dfrac{1\:+\:\cos\:\theta}{1\:-\:\cos\:\theta}}

\displaystyle{\implies\sf\:RHS\:=\:\dfrac{1\:+\:\dfrac{\sin\:\theta}{\tan\:\theta}}{1\:-\:\dfrac{\sin\:\theta}{\tan\:\theta}}\:\:\:\:-\:-\:-\:\left[\:\because\:\tan\:\theta\:=\:\dfrac{\sin\:\theta}{\cos\:\theta}\:\right]}

\displaystyle{\implies\sf\:RHS\:=\:\dfrac{\dfrac{\tan\:\theta\:+\:\sin\:\theta}{\tan\:\theta}}{\dfrac{\tan\:\theta\:-\:\sin\:\theta}{\tan\:\theta}}}

\displaystyle{\implies\sf\:RHS\:=\:\dfrac{\tan\:\theta\:+\:\sin\:\theta}{\cancel{\tan\:\theta}}\:\times\:\dfrac{\cancel{\tan\:\theta}}{\tan\:\theta\:-\:\sin\:\theta}}

\displaystyle{\implies\sf\:RHS\:=\:\dfrac{\tan\:\theta\:+\:\sin\:\theta}{\tan\:\theta\:-\:\sin\:\theta}}

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{\tan\:\theta\:+\:\sin\:\theta}{\tan\:\theta\:-\:\sin\:\theta}}

\displaystyle{\therefore\:\underline{\boxed{\red{\sf\:LHS\:=\:RHS}}}}

Hence proved!

Similar questions