Math, asked by nsssssop, 1 year ago

tan^-1(2x/1-x²) का Cos^-1(1-x²/1+x²) का x के सापेक्ष अवकलन ज्ञात कीजिये ​

Answers

Answered by Swarnimkumar22
11

Answer- 1

Used Formulas-

 \boxed{ 1.\sf \:  {2tan}^{ - 1} x =  {tan}^{ - 1}( \frac{2x}{1 -  {x}^{2} } ) } \\ \boxed{2. \sf \: 2 {tan}^{ - 1}x = ( \frac{1 -  {x}^{2} }{1 +  {x}^{2} })  } \\  \boxed{3. \sf \:  \frac{d}{dx} {tan}^{ - 1}x =  \frac{1}{ {1} + { {x}^{2} } }   }

Solution-

 \implies \large \sf \frac{d \:  {tan}^{ - 1} ( \frac{2x}{1 -  {x}^{2} }) }{d \:  {cos }^{ - 1} ( \frac{1 -  {x}^{2} }{1 +  {x}^{2} } )}  \\

अब हम सूत्र 2tan^-1x का प्रयोग करेंगे

 \implies \sf \large \:  \frac{d(2 {tan}^{ - 1} x)}{d(2 {tan}^{ - 1} x)}  \\

dx से दोनो पदो मे भाग देने पर

 \implies \sf \large \:  \frac{ \frac{d}{dx}(2 {tan}^{ - 1}x)  }{ \frac{d}{dx} (2 {tan }^{ - 1} x)}  \\

 \implies \sf \large \:  \frac{2 \times ( \frac{1}{1 +  {x}^{2} } )}{2 \times  (\frac{1}{1 +  {x}^{2} } )}  \\

 \implies \: 1

Similar questions