tan⁻¹(acosx-bsinx/bcosx+asinx)=tan⁻¹(a/b) - x, - π/2 < x < π/2,a/b tanx > -1,Prove it
Answers
Answered by
1
we have to prove that,
tan⁻¹(acosx-bsinx/bcosx+asinx)=tan⁻¹(a/b) - x, where -π/2 < x < π/2 , a/b tanx > -1
Let tan⁻¹(a/b) - x = A .........(1)
⇒tan⁻¹(a/b) = x + A
⇒a/b = tan(x + A)
⇒a/b = (tanx + tanA)/(1 - tanx.tanA)
⇒a - atanx.tanA = btanx + btanA
⇒a - btanx = btanA + atanx.tanA
⇒(a - btanx) = tanA(b + atanx)
⇒(a - btanx)/(b + atanx) = tanA
putting, tanx = sinx/cosx
⇒(acosx - bsinx)/(bcosx + asinx) = tanA
⇒tan⁻¹ [(acosx - bsinx)/(bcosx + asinx)] = A ........(2)
from equations (1) and (2),
tan⁻¹[(acosx-bsinx)/(bcosx+asinx)]=tan⁻¹(a/b) - x [ proved]
Answered by
1
Answer:
Similar questions