tan⁻¹(√1+x²+√1-x²/√1+x² -√1-x²) = π/4 + 1/2cos⁻¹x²,-1 < x< 1,x≠0,prove it
Answers
we have to prove that,
tan⁻¹(√1+x²+√1-x²/√1+x² -√1-x²) = π/4 + 1/2cos⁻¹x², where -1 < x < 1 , x ≠ 0
Let π/4 + 1/2cos⁻¹x² = A .....(1)
⇒A - π/4 = 1/2cos⁻¹x²
⇒2(A - π/4) = 2A - π/2 = cos⁻¹x²
⇒cos(2A - π/2) = x²
we know, cos(-θ) = cosθ
so, cos(2A - π/2) = cos(π/2 - 2A)
also cos(π/2 - θ) = sinθ
so, cos(2A - π/2) = cos(π/2 - 2A) = sin2A.
now, sin2A = x²
use formula, sin2θ = 2tanθ/(1 + tan²θ)
so, sin2A = 2tanA/(1 + tan²A)
⇒x² = 2tanA/(1 + tan²A)
⇒x² + x²tan²A = 2tanA
⇒x²tan²A - 2tanA + x² = 0
⇒tanA = {2 ± √(2² - 4x².(x²))}/2x²
= {2 ± 2√(1 - x⁴)}/2x²
taking tanA = {2 + 2√(1 - x⁴)}/2x²
= {(1 + x²) (1 - x²) + 2√(1 - x²).√(1 + x²)}/{√(1 + x²) - √(1 - x²)}{√(1 + x²) + √(1 - x²)}
= [{√(1 + x²) + √(1 - x²)}]²/[{√(1 + x²) - √(1 - x²)}{√(1 + x²) + √(1 - x²)}]
= [√(1 + x²) + √(1 - x²)]/[√(1 + x²) - √(1 - x²)]
hence, tanA = [√(1 + x²) + √(1 - x²)]/[√(1 + x²) - √(1 - x²)]
⇒A = tan^-1 [√(1 + x²) + √(1 - x²)]/[√(1 + x²) - √(1 - x²)] ........(2)
from equations (1) and (2),
tan⁻¹(√1+x²+√1-x²/√1+x² -√1-x²) = π/4 + 1/2cos⁻¹x² [ proved]