tan-' (1)+cot-' (1)+sin*'(-1).
Answers
Step-by-step explanation:
Integrate the function
╔════════════════════════╗
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️
ㅤ ㅤ ㅤ ㅤ ㅤ
ㅤ ㅤ ㅤ ㅤ ㅤ
ㅤ ㅤ ㅤ ㅤ ㅤ
ㅤ ㅤ ㅤ ㅤ ㅤ
ㅤ ㅤ ㅤ ㅤ ㅤ
ㅤ ㅤ ㅤ ㅤ ㅤ
ㅤ ㅤ ㅤ ㅤ ㅤ
ㅤ ㅤ ㅤ ㅤ ㅤ
☛Let tanx=t
☛differentiating both sides w.r.t.x
ㅤ ㅤ ㅤ ㅤ ㅤ
ㅤ ㅤ ㅤ ㅤ ㅤ
ㅤ ㅤ ㅤ ㅤ ㅤ
ㅤ ㅤ ㅤ ㅤ ㅤ
ㅤ ㅤ ㅤ ㅤ ㅤ
ㅤ ㅤ ㅤ ㅤ ㅤ
ㅤ ㅤ ㅤ ㅤ ㅤ
ㅤ ㅤ ㅤ ㅤ ㅤ
ㅤ ㅤ ㅤ ㅤ ㅤ
╚════════════════════════╝
нσρє ıт нєłρs yσυ
_____________________
тнαηkyσυ
Answer:
Step-by-step explanation:
\huge\mathfrak\green{\bold{\underline{☘{ ℘ɧεŋσɱεŋศɭ}☘}}}
☘℘ɧεŋσɱεŋศɭ☘
\red{\bold{\underline{\underline{❥Question᎓}}}}
❥Question᎓
Integrate the function
\huge\tt\frac{ \sqrt{tanx} }{sinxcosx}
sinxcosx
tanx
\huge\tt\underline\blue{「Answer」 }
「Answer」
╔════════════════════════╗
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️
⇛\huge\tt\frac{ \sqrt{tanx} }{sinxcosx}⇛
sinxcosx
tanx
ㅤ ㅤ ㅤ ㅤ ㅤ
⇛\huge\tt \frac{ \sqrt{tanx} }{sinxcosx \times \frac{cosx}{cosx} }⇛
sinxcosx×
cosx
cosx
tanx
ㅤ ㅤ ㅤ ㅤ ㅤ
⇛\huge\tt \frac{ \sqrt{tanx} }{sinx \times \frac{ {cos}^{2} x}{cosx} }⇛
sinx×
cosx
cos
2
x
tanx
ㅤ ㅤ ㅤ ㅤ ㅤ
⇛ \huge\tt\frac{ \sqrt{tanx} }{ {cos}^{2} x \times \frac{sinx}{cosx} }⇛
cos
2
x×
cosx
sinx
tanx
ㅤ ㅤ ㅤ ㅤ ㅤ
⇛\huge\tt\frac{ \sqrt{tanx} }{ {cos}^{2}x \times tanx }⇛
cos
2
x×tanx
tanx
ㅤ ㅤ ㅤ ㅤ ㅤ
⇛\huge\tt {tan}^{ \frac{1}{2} - 1 } \times \frac{1}{ {cos}^{2} x}⇛tan
2
1
−1
×
cos
2
x
1
ㅤ ㅤ ㅤ ㅤ ㅤ
⇛\huge\tt {(tan)}^{ - \frac{ 1}{2} } \times \frac{1}{ {cos}^{2}x } = {(tanx)}^{ - \frac{1}{2} } \times {sec}^{2} x⇛(tan)
−
2
1
×
cos
2
x
1
=(tanx)
−
2
1
×sec
2
x
ㅤ ㅤ ㅤ ㅤ ㅤ
⇛\huge\tt {(tan)}^{ - \frac{ 1}{2} } \times \frac{1}{ {cos}^{2}x } = ∫ {(tanx)}^{ - \frac{1}{2} } \times {sec}^{2} x \times dx⇛(tan)
−
2
1
×
cos
2
x
1
=∫(tanx)
−
2
1
×sec
2
x×dx
ㅤ ㅤ ㅤ ㅤ ㅤ
☛Let tanx=t
☛differentiating both sides w.r.t.x
ㅤ ㅤ ㅤ ㅤ ㅤ
⇛\huge\tt {sec}^{2} x = \frac{dt}{dx}⇛sec
2
x=
dx
dt
ㅤ ㅤ ㅤ ㅤ ㅤ
⇛\huge\tt{dx \frac{dt}{ {sec}^{2}x } }⇛dx
sec
2
x
dt
ㅤ ㅤ ㅤ ㅤ ㅤ
ㅤ ㅤ ㅤ ㅤ ㅤ
⇛\huge\tt∴∫ {(tanx)}^{ - \frac{1}{2} } \times {sec}^{2} x \times dx⇛∴∫(tanx)
−
2
1
×sec
2
x×dx
ㅤ ㅤ ㅤ ㅤ ㅤ
⇛\huge\tt ∫ {(t)}^{ - \frac{1}{2} } \times {sec}^{2} x \times \frac{dt}{ {sec}^{2}x }⇛∫(t)
−
2
1
×sec
2
x×
sec
2
x
dt
ㅤ ㅤ ㅤ ㅤ ㅤ
⇛ \huge\tt ∫ {t}^{ - \frac{1}{2} } \times dt⇛∫t
−
2
1
×dt
ㅤ ㅤ ㅤ ㅤ ㅤ
⇛ \huge\tt\frac{ {t}^{ - \frac{1}{2} + 1} }{ - \frac{1}{2} + 1 } + c⇛
−
2
1
+1
t
−
2
1
+1
+c
ㅤ ㅤ ㅤ ㅤ ㅤ
⇛ \huge\tt \frac{ {t}^{ \frac{1}{2} } }{ \frac{1}{2} } + c = 2 {t}^{ \frac{1}{2} } + c = 2 \sqrt{t} + c⇛
2
1
t
2
1
+c=2t
2
1
+c=2
t
+c
ㅤ ㅤ ㅤ ㅤ ㅤ
⇛\huge2 \sqrt{t} + c = 2 \sqrt{tanx} + c⇛2
t
+c=2
tanx
+c
╚════════════════════════╝
нσρє ıт нєłρs yσυ
_____________________
тнαηkyσυ