tanθ/1-cotθ+cotθ/1-tanθ =1 +tanθ+cotθ=1+secθ.cosecθ,Prove it by using trigonometric identities.
Answers
Answered by
69
LHS = tanθ/(1 - cotθ) + cotθ/(1 - tanθ)
= tanθ/(1 - 1/tanθ) + (1/tanθ)/(1 - tanθ)
= tan²θ/(tanθ - 1) + 1/tanθ(1 - tanθ)
= tan³θ/(tanθ - 1) - 1/tanθ(tanθ - 1)
= (tan³θ - 1)/tanθ(tanθ - 1)
= (tanθ - 1)(tan²θ + 1 + tanθ)/tanθ(tanθ - 1)
= (tan²θ + 1 + tanθ)/tanθ
= tanθ + cotθ + 1
= sinθ/cosθ + cosθ/sinθ + 1
= (sin²θ + cos²θ)/sinθ.cosθ + 1
= secθ.cosecθ + 1
= 1 + secθ.cosecθ = RHS
= tanθ/(1 - 1/tanθ) + (1/tanθ)/(1 - tanθ)
= tan²θ/(tanθ - 1) + 1/tanθ(1 - tanθ)
= tan³θ/(tanθ - 1) - 1/tanθ(tanθ - 1)
= (tan³θ - 1)/tanθ(tanθ - 1)
= (tanθ - 1)(tan²θ + 1 + tanθ)/tanθ(tanθ - 1)
= (tan²θ + 1 + tanθ)/tanθ
= tanθ + cotθ + 1
= sinθ/cosθ + cosθ/sinθ + 1
= (sin²θ + cos²θ)/sinθ.cosθ + 1
= secθ.cosecθ + 1
= 1 + secθ.cosecθ = RHS
Answered by
34
HELLO DEAR,
your questions is------------> Tanθ/1-cotθ+cotθ/1-tanθ =1 +tanθ+cotθ=1+secθ.cosecθ,Prove it by using trigonometric identities.
NOW, LHS = tanθ/(1 - cotθ) + cotθ/(1 - tanθ)
tanθ/(1 - 1/tanθ) + (1/tanθ)/(1 - tanθ)
tan²θ/(tanθ - 1) + 1/tanθ(1 - tanθ)
tan³θ/(tanθ - 1) - 1/tanθ(tanθ - 1)
(tan³θ - 1)/tanθ(tanθ - 1)
(tanθ - 1)(tan²θ + 1 + tanθ)/tanθ(tanθ - 1)
(tan²θ + 1 + tanθ)/tanθ
tanθ + cotθ + 1
sinθ/cosθ + cosθ/sinθ + 1
(sin²θ + cos²θ)/sinθ.cosθ + 1
secθ.cosecθ + 1
1 + secθ.cosecθ = RHS
HENCE, L.H.S = R.H.S
I HOPE ITS HELP YOU DEAR,
THANKS
Similar questions