Math, asked by ishteyaqueahmad964, 9 months ago

tan/1-cotA +cotA/1-tanA =secAcosecA+1

Answers

Answered by bhanuprakash01071972
0

Answer:

if u give the options it's easy way to get the answer.

Answered by Anonymous
2

\huge{\underline{\underline{\red{♡Solution→}}}}

\frac{tan \: a}{1 - cot \: a}  +  \frac{cot \: a}{1 - tan \: a}  = sec \: a \: cosec \: a + 1

\bold{\huge{\underline{\underline{\rm{ LHS :}}}}}

  = \frac{tan \: a}{1 - cot \: a}  +  \frac{cot \: a}{1 - tan \: a}

 =  \frac{ \frac{sin \: a}{cos \: a} }{1 -  \frac{cos \: a}{sin \: a} }  +  \frac{ \frac{cos \: a}{sin \: a} }{1 -  \frac{sin \: a}{cos \: a} }  \\  =  \frac{ \frac{sin \: a}{cos \: a} }{ \frac{sin \: a - cos \: a}{sin \: a} }  +  \frac{ \frac{cos \: a}{sin \: a} }{ \frac{cos \: a - sin \: a}{cos \: a} }  \\  =  \frac{ {sin \:}^{2} a}{cos \: a(sin \: a \:  - cos \: a)}  +  \frac{ {cos}^{2}a }{sin \: a(cos \: a - sin \: a)}

   =  \frac{ {sin \:}^{2} a}{cos \: a(sin \: a \:  - cos \: a)}   -  \frac{ {cos}^{2}a }{sin \: a(sin \: a - cos \: a)}

 =  \frac{ {sin}^{3}a -  {cos}^{3}  a}{sin \: a \: cos \: a(sin \: a - cos \: a)}

 =  \frac{(sin \: a - cos \: a)( {sin}^{2}a  +   {cos}^{2} a  + sin \: a \: cos \: a) }{sin \: a \: cos \: a(sin \: a \:  - cos \: a)}

(Sin a - cos a) will be cancelled.

And sin²a + cos²a = 1

 =  \frac{1 + sin \: a \: cos \: a}{sin \: a \: cos \: a}

 =  \frac{1}{sin \: a \: cos \: a}  +  \frac{sin \: a \: cos \: a}{sin \: a \: cos \: a}

We know that

  • 1/sin a = cosec a
  • 1/cos a = sec a

 = sec \: a \:  + cosec \: a \:  + 1

\bold{\huge{\underline{\underline{\rm{ RHS ↑}}}}}

── ❝ TheEnforceR 。◕‿◕。 ❞ ──

Mark as Brainliest !! ✨✨

Similar questions