tan¢+1/tan¢=2.find the valueof tan²¢+1/tan²¢
Answers
Answered by
1
Let tan be equal to x
then,
x + 1/x = 2
(x+1/x)^2= x^2 + 1/x^2 + 2
Then,
x^2 + 1/x^2 = 4 - 2 = 2
Hope this helps
then,
x + 1/x = 2
(x+1/x)^2= x^2 + 1/x^2 + 2
Then,
x^2 + 1/x^2 = 4 - 2 = 2
Hope this helps
Smeeksha:
thanks
Answered by
1
Answer :
Given,
tan¢ + 1/tan¢ = 2
Now, squaring both sides, we get
(tan¢ + 1/tan¢)² = 2²
⇒ tan²¢ + (2 × tan¢ × 1/tan¢) + (1/tan¢)² = 4
⇒ tan²¢ + 2 + 1/tan²¢ = 4 [∵ tan¢ × 1/tan¢ = 1]
⇒ tan²¢ + 1/tan²¢ = 4 - 2
⇒ tan²¢ + 1/tan²¢ = 2
∴ tan²¢ + 1/tan²¢ = 2
#MarkAsBrainliest
Given,
tan¢ + 1/tan¢ = 2
Now, squaring both sides, we get
(tan¢ + 1/tan¢)² = 2²
⇒ tan²¢ + (2 × tan¢ × 1/tan¢) + (1/tan¢)² = 4
⇒ tan²¢ + 2 + 1/tan²¢ = 4 [∵ tan¢ × 1/tan¢ = 1]
⇒ tan²¢ + 1/tan²¢ = 4 - 2
⇒ tan²¢ + 1/tan²¢ = 2
∴ tan²¢ + 1/tan²¢ = 2
#MarkAsBrainliest
Similar questions