Math, asked by thanigaivelbhar, 1 year ago

tan(2π /18) × tan(4π /18) × tan(8π / 18) =

Answers

Answered by mdehtasham165
5

tan (2Π/18) × tan(4Π/18)×tan(8Π/18)

Take common tan (2Π/18)

tan(2Π/18) { 1×2Π×4Π}

tan (2Π/18)(8Π)

tan16Π/18

Answered by charliejaguars2002
7

Answer:

\large\boxed{\tan(\frac{\pi }{9})\tan (\frac{2\pi }{9})\tan (\frac{4\pi }{9})=1.73}

Step-by-step explanation:

To solve this problem, first you have to use pie or tan formula from left to right.

Given:

tan(2π /18) × tan(4π /18) × tan(8π / 18

Solutions:

First, multiply.

\displaystyle 2*\frac{\pi}{18}

Common factor of 2.

\displaystyle 18\div2=9

\displaystyle \frac{\pi}{9}

Next, multiply numbers from left to right.

\displaystyle 4*\frac{\pi}{18}

Common factor of 2.

\displaystyle 4\div2=2\quad 18\div2=9

\displaystyle \frac{2\pi}{9}

\displaystyle\tan (\frac{\pi }{9})\tan (\frac{2\pi }{9})\tan (8*\frac{\pi }{18})

Solve.

Multiply.

\displaystyle 8*\frac{\pi}{18}

\displaystyle \frac{\pi8}{18}

Common factor of 2.

Divide numbers from left to right.

\displaystyle 8\div2=4\quad18\div2=9

\displaystyle\tan \left(\frac{\pi }{9}\right)\tan \left(\frac{2\pi }{9}\right)\tan \left(\frac{4\pi }{9}\right)

\large\boxed{\tan \left(\frac{\pi }{9}\right)\tan \left(\frac{2\pi }{9}\right)\tan \left(\frac{4\pi }{9}\right)}

In conclusion, the correct answer is tan(π/9)tan(2π/9)tan(4π/9).

Similar questions