Tan 20 / cosec 70 whole square + cot 20 divided by sec 70 square + 2 tan 15 tan 37 tan 53 tan 60 tan 75
Answers
Answer:
Step-by-step explanation:
PLEASE MARK ME AS BRAINLIEST
Step-by-step explanation:
It is tan 53 not tan 13.
2/3cosec^2 58 - 2/3cot58·tan32 - 5/3 tan53·tan37·tan45·tan53·tan37= -1
L.H.S
2/3cosec^2 58 - 2/3cot58·tan32 - 5/3 tan53·tan37·tan45·tan53·tan37
2/3cosec^2 58 - 2/3cot58·tan(90-32) - 5/3 tan(90-53)·tan37·tan45·tan(90-53)·tan37 {By complementary angles}
2/3cosec^2 58 - 2/3cot58·cot58 - 5/3 cot37·tan37·tan45·cot37·tan37
2/3cosec^2 58 - 2/3cot^2 58 - 5/3 1/tan37·tan37·tan45·1/tan37·tan37 {cotΘ=1/tanΘ}
2/3[cosec^2 58 - cot^2 58] - 5/3 ·tan45
2/3[1] - 5/3 ·1 {cosec^2Θ-cot^2Θ=1 ; tan45=1}
2/3-5/3
-3/3 = -1
Therefore L.H.S=R.H.S
So 2/3cosec^2 58 - 2/3cot58·tan32 - 5/3 tan53·tan37·tan45·tan53·tan37= -1