Math, asked by njpyhshakya1261, 9 months ago

Tan^4 theta + tan^2 theta = 1 show that cos ^4 theta + cos ^2 theta = 1

Answers

Answered by Anonymous
8

{ \red{ \underline{ \underline{ \huge{ \mathfrak{answer}}}}}}

 { \tan }^{4}  \theta +  { \tan }^{2}  \theta \:  = 1

( { \tan }^{2}  \theta \:  + 1) { \tan}^{2} \theta \:  = 1

 { \sec}^{2}  \theta \:  { \tan }^{2} \theta \:  = 1

 ( \frac{1}{  { \cos}^{2}  \theta} ) { \tan }^{2}  \theta = 1

 \frac{  { \sin }^{2}  \theta}{ { \cos}^{2} \theta }  =  { \cos }^{2}  \theta

1 -  { \cos}^{2}  \theta =  { \cos }^{4} \theta

 { \cos }^{4}  \theta +  { \cos }^{2}  \theta = 1

{ \green{ \underline{ \huge{ \mathcal{be \: brainly}}}}}

Similar questions