Tan(π\4+x)+tan(π\4-x)=2sec2x
Answers
Answered by
3
Step-by-step explanation:
Answer:
Step-by-step explanation:
The given equation is:
tan({\frac{\pi}{4}+x)+tan({\frac{\pi}{4}-x)=2sec2x
Taking the LHS of the above equation, we get
tan({\frac{\pi}{4}+x)+tan({\frac{\pi}{4}-x)=\frac{1+tanx}{1-tanx}+\frac{1-tanx}{1+tanx}
=\frac{(1+tanx)^{2}+(1-tanx)^2}{1-tan^2x}
1−tan
2
x
(1+tanx)
2
+(1−tanx)
2
=\frac{2(1+tan^2x)}{(1-tan^2x)}
(1−tan
2
x)
2(1+tan
2
x)
=\frac{2(cos^2x+sin^2x)}{cos^2x-sin^2x}
cos
2
x−sin
2
x
2(cos
2
x+sin
2
x)
=\frac{2}{cos2x}
cos2x
2
=2sec2x2sec2x
=RHS
Hence proved
Similar questions
English,
4 months ago
History,
4 months ago
Science,
4 months ago
India Languages,
8 months ago
Math,
8 months ago
Hindi,
11 months ago
Geography,
11 months ago
Social Sciences,
11 months ago