Math, asked by drlngbaji1, 1 year ago

Tan(45+B)=
 2 + \sqrt{3}
Find B value

Answers

Answered by KanikAb
8
tan(45+B)=2+√3

=>tan 45+ tanB/ 1- tan45 tanB = 2+√3

=>1+tanB/1-1×tanB= 2+√3

=>1+tanB/1-tanB=2+√3

=>1+tanB=(2+√3)(1-tanB)

=>1+ tanB=2-2tanB+√3-√3tanB

=>3tanB +√3tanB=2-1+√3

=>tanB(3+√3)=1+√3

=>tanB=1+√3/3+√3

=>tanB=1+√3/3(1+√3)

=>tanB=1/√3

=>tanB=tan30

=>B=30

KanikAb: chck it... i crctd it
drlngbaji1: that is wrong,
KanikAb: wait a secnd ha
drlngbaji1: ok
drlngbaji1: where is my answer???
KanikAb: wait waitt givngg
drlngbaji1: ok
drlngbaji1: please tell me ans fast
KanikAb: i did it
drlngbaji1: can u have Facebook?
Answered by Swarup1998
4
⛤HERE IS YOUR ANSWER⛤

tan(45 +  \beta ) = 2 +  \sqrt{3}  \\ or \:  \:  \frac{tan45 + tan \beta }{1 - tan45.tan \beta }  = 2 +  \sqrt{3}  \\ or \:  \: \frac{1 + tan \beta }{1 - tan \beta }  =  \frac{2 +  \sqrt{3} }{1}  \\ operting \: we \: get \\  \frac{(1 + tan \beta ) + (1 - tan \beta )}{(1 + tan \beta ) - (1 - tan \beta )}  =  \frac{(2 +  \sqrt{3} ) + 1}{ (2 +  \sqrt{3} ) - 1}  \\ or \:  \:  \frac{2}{2tan \beta }  =  \frac{3 +  \sqrt{3} }{1 +  \sqrt{3} }  \\ or \:  \:  \frac{1}{tan \beta }  =  \frac{ \sqrt{3} (1 +  \sqrt{3} )}{1 +  \sqrt{3} }  \\ or \:  \:  \frac{1}{tan \beta }  =  \sqrt{3}  \\ or \:  \: tan \beta  =  \frac{1}{ \sqrt{3} }  = tan \frac{\pi}{6}  \\  or \:  \:  \beta  =  \frac{\pi}{6}

⛤HOPE THIS ⬆ HELPS YOU⛤
Similar questions