Math, asked by Piyupd4917, 11 months ago

Tan 65/cos 25 find the value of

Answers

Answered by KiranJalumuri
1

Answer:

the answer is = -1.48308523752

Answered by Anonymous
0

 </p><p></p><p></p><p>\rightarrow \quad \frac{ \tan 65^{\circ} }{ \cos 25^{\circ} } </p><p></p><p>\\ \\</p><p></p><p>\rightarrow \quad \frac{ \frac{ \sin 65^{\circ} }{ \cos 65^{\circ} } }{ \cos 25^{\circ}}  \qquad \quad ( \because \tan \theta = \frac{\sin \theta }{ \cos \theta } ) </p><p></p><p>\\ \\</p><p></p><p>\rightarrow \quad \frac{\sin 65^{\circ} }{ \cos 25^{\circ} \times \cos 65^{\circ} } </p><p></p><p>\\ \\</p><p></p><p>\rightarrow \quad \frac{ \cos ( 90^{\circ} - 65^{\circ} ) }{  \cos 25^{\circ} \times \cos 65^{\circ} } \qquad \quad ( \because \sin \theta = \cos ( 90^{\circ} - \theta )  )</p><p></p><p>\\ \\</p><p></p><p>\rightarrow \quad \frac{ \cancel{ \cos 25^{\circ} }} { \cancel{ \cos 25^{\circ} } \times \cos 65^{\circ} }</p><p></p><p>\\ \\</p><p></p><p>\rightarrow \quad \frac{1}{\cos 65^{\circ}} \\</p><p></p><p>\\</p><p></p><p> \rightarrow \quad \sec 65^{\circ} \qquad \quad ( \because \sec \theta = \frac{1}{\cos \theta } )</p><p></p><p>\\ \\</p><p></p><p>\rightarrow \quad \bold{2.366201}</p><p></p><p></p><p></p><p></p><p>

Similar questions