Math, asked by yr5952336, 4 days ago

tan 69° + tan 66° by 1 - tan 69º tan 66​

Answers

Answered by mathdude500
6

Given Question

Evaluate the following

\rm :\longmapsto\:\dfrac{tan69\degree  + tan66\degree }{1 - tan69\degree  \: tan66\degree }

 \green{\large\underline{\sf{Solution-}}}

Given Trigonometric function is

\rm :\longmapsto\:\dfrac{tan69\degree  + tan66\degree }{1 - tan69\degree  \: tan66\degree }

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{ tan(x + y) =  \frac{tanx + tany}{1 - tanx \: tany}}}} \\

So, here

 \purple{\rm :\longmapsto\:x = 69\degree }

and

 \purple{\rm :\longmapsto\:y = 66\degree }

So, above expression can be rewritten as

\rm \:  =  \: tan(69\degree  + 66\degree )

\rm \:  =  \: tan135\degree

can be further rewritten as

\rm \:  =  \: tan(180\degree  - 45\degree )

\rm \:  =  \:  - tan45\degree

\rm \:  =  \:  -  \: 1

Hence,

\rm\implies \:\:\boxed{\tt{ \dfrac{tan69\degree  + tan66\degree }{1 - tan69\degree  \: tan66\degree }  =  -  \: 1 \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\boxed{\tt{ sin(x + y) = sinx \: cosy + cosx \: siny \: }}

\boxed{\tt{ sin(x  -  y) = sinx \: cosy -  cosx \: siny \: }}

\boxed{\tt{ cos(x + y) = cosx \: cosy \:  -  \: siny \: sinx \: }}

\boxed{\tt{ cos(x - y) = cosx \: cosy \:  +   \: siny \: sinx \: }}

\boxed{\tt{ tan(x + y) =  \frac{tanx + tany}{1 - tanx \: tany}}}

\boxed{\tt{ tan(x  -  y) =  \frac{tanx  -  tany}{1  +  tanx \: tany}}}

\boxed{\tt{ tan(45\degree  + x) =  \frac{1 + tanx}{1 - tanx}}}

\boxed{\tt{ tan(45\degree -  x) =  \frac{1 -  tanx}{1 + tanx}}}

Answered by XxitzZBrainlyStarxX
6

Question:-

Evaluate the Following:

 \\ \sf \dfrac{tan69\degree + tan66\degree }{1 - tan69\degree \: tan66\degree }

Given:-

 \sf \longmapsto\:\dfrac{tan69\degree + tan66\degree }{1 - tan69\degree \: tan66\degree }

To Solve:-

 \sf\longmapsto\:\dfrac{tan69\degree + tan66\degree }{1 - tan69\degree \: tan66\degree }

Solution:-

Let, us consider the L.H.S.

\sf \dfrac{tan69\degree + tan66\degree }{1 - tan69\degree \: tan66\degree }

As we Known that,

 \sf \large tan (A+B)= \frac{(tanA + tanB)}{(1 - tanA.tanB)}

Here,

  • A = 69°.

  • B = 66°

 \sf \therefore \dfrac{(tan69\degree + tan66\degree) }{(1 - tan69\degree \: tan66\degree) } = tan(69 + 66) \degree

tan = 135°

tan = 45°

= 1.

= R.H.S.

 \sf \large  \red{∴ L.HS. = R.HS.}

 \sf \large \blue{Thus,Proved.}

Answer:-

\sf  { \boxed{ \sf \green{\dfrac{tan69\degree + tan66\degree }{1 - tan69\degree \: tan66\degree } =  - 1}}}

Hope you have satisfied.

Similar questions