tan 9 tan 27 tan 45 tan 63 tan 81 =1
Answers
Answered by
6
Answer:
1
Step-by-step explanation:
To prove---> tan9 tan27 tan63 tan81 = 1
Solution---> We know that ,
tan ( 90 - θ ) = Cotθ
LHS = tan9 tan27 tan63 tan81
= tan( 90 - 81 ) tan ( 90 - 63 ) tan63 tan81
= Cot81 Cot63 tan63 tan81
= ( 1 / tan81 ) ( 1 / tan63 ) tan63 tan81
= 1 = RHS
Additional identities--->
1) Sin( 90 - θ ) = Cosθ
2) Cos ( 90 - θ ) = Sinθ
3) tan ( 90 - θ ) = Cotθ
4) Cot ( 90 - θ ) = tanθ
5) Sec ( 90 - θ ) = Cosecθ
6) Cosec ( 90 - θ ) = Secθ
7) Sin²θ + Cos²θ = 1
8) 1 + tan²θ = Sec²θ
9) 1 + Cot²θ = Cosec²θ
Similar questions