Math, asked by serialsstar3634, 19 days ago

tan 9 theta - tan 5 theta - tan 4 theta = tan 9 theta tan5 theta tan 4 theta​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

We have to prove that

\rm \: tan9\theta  - tan5\theta  - tan4\theta  = tan9\theta tan5\theta tan4\theta  \\

To Prove this, we know that

\rm \: 9\theta  = 5\theta  + 4\theta  \\

So,

\rm \: tan9\theta  = tan(5\theta  + 4\theta)  \\

We know

\boxed{\sf{  \: \: tan(x + y) \:  =  \:  \frac{tanx \:  +  \: tany}{1 \:  -  \: tanx \: tany \: }  \:  \: }} \\

So, using this identity, we get

\rm \: tan9\theta  = \dfrac{tan5\theta  + tan4\theta }{1 - tan5\theta  \: tan4\theta }  \\

\rm \: tan9\theta  - tan9\theta tan5\theta tan4\theta  = tan5\theta  + tan4\theta  \\

So, on rearranging the terms, we get

\rm \: tan9\theta  - tan5\theta  - tan4\theta  = tan9\theta tan5\theta tan4\theta  \\

Hence,

\boxed{\sf{  \:\rm \: tan9\theta  - tan5\theta  - tan4\theta  = tan9\theta \:  tan5\theta  \: tan4\theta  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\boxed{\sf{  \:sin(x + y) = sinx \: cosy \:  +  \: siny \: cosx \: }} \\

\boxed{\sf{  \:sin(x - y) = sinx \: cosy \:   -   \: siny \: cosx \: }} \\

\boxed{\sf{  \:cos(x + y) = cosx \: cosy \:   -   \: siny \: sinx \: }} \\

\boxed{\sf{  \:cos(x  -  y) = cosx \: cosy \: + \: siny \: sinx \: }} \\

\boxed{\sf{  \: \: tan(x + y) \:  =  \:  \frac{tanx \:  +  \: tany}{1 \:  -  \: tanx \: tany \: }  \:  \: }} \\

\boxed{\sf{  \: \: tan(x  -  y) \:  =  \:  \frac{tanx \: -  \: tany}{1 \: + \: tanx \: tany \: }  \:  \: }} \\

Answered by maheshtalpada412
2

Step-by-step explanation:

 \tt \color{red}given :  tan 9  \theta - tan 5  \theta - tan 4  \theta = tan 9  \theta \:  tan5 \theta  \: tan 4  \theta

   \red{\boxed{ \overline{ \underline{ \tt \color{darkblue}solution :  - }}}}

 \tt \color{darkred} \: \:  9 \theta = 5 \theta + 4\theta

 \tt \color{orange}take \: \:  tan \:  \: on \ \: both \:  \: sides \:

 \tt \color{navy} \tan(9\theta)  =  \tan(5\theta + 4\theta)

 \tt \color{lime} \tan(9\theta)  =  \cfrac{ \tan(5\theta) \tan(4\theta)  }{1 -  \tan(5\theta)  \tan(4\theta) }

 \tt \color{green} \tan(9\theta) (1 -  \tan(5\theta) \tan(4\theta)  ) =  \tan(5\theta)  \tan(4\theta)

 \tt \color{purple} \tan(9\theta)   - \tan(5\theta)   - \tan(4\theta)  =  \tan(9\theta)  \tan(5\theta)  \tan(4\theta)

 \color{maroon}\mathbb{ HENCE   \:  \:  \: PROVED..}

Similar questions