tan(90-∅).cot∅-sec(90-∅).cosec∅+
Answers
Answered by
0
tan(90-∅).cot∅-sec(90-∅).cosec∅+
=cot∅cot∅-cosec∅cosec∅+√3tan(90-78)tan78tan60°
= cot²∅ - cosec²∅+√3cot78tan78(√3)
= -1 + √3×√3
= -1 + 3
[ Since , cot²A- cosec²A = -1]
= 2
••••
=cot∅cot∅-cosec∅cosec∅+√3tan(90-78)tan78tan60°
= cot²∅ - cosec²∅+√3cot78tan78(√3)
= -1 + √3×√3
= -1 + 3
[ Since , cot²A- cosec²A = -1]
= 2
••••
papap2w:
you turned ✓3 into 3
Answered by
1
Answer:
2
Step-by-step explanation:
tan (90-∅). cot∅ - sec (90-∅). cosec∅ + √3 * tan(12) * tan(60) * tan(78)
= cot∅ . cot∅ - cosec∅ . cosec∅ + √3 * tan(90-78) * tan(60) * tan(78)
[as tan (90 - ∅) = cot∅ and sec (90-∅) = cosec∅]
= cot²∅ - cosec²∅ + √3 * cot(78) * tan(78) * tan(60)
= -1 + √3 * 1 * tan(60)
[as cot²∅ - cosec²∅ = 1 and cot∅ * tan∅ ]
= -1 + √3 * √3 [as tan(60) = √3 ]
= -1 + 3
= 2
Similar questions