tan (A+B/2)=cot C/2
Answers
Answered by
2
Answer:
(2∠A+∠C)=cot(2B)
Step-by-step explanation:
\begin{gathered}We \: know \: that,\\ In \: Triangle \: ABC , \\\angle A + \angle B + \angle C=180\degree\end{gathered}Weknowthat,InTriangleABC,∠A+∠B+∠C=180°
( Angle sum property )
\implies \angle A+\angle C = 180\degree - \angle B⟹∠A+∠C=180°−∠B
Divide both sides by 2 , we get
\implies \frac{\angle A+ \angle C}{2}=\frac{180}{2}-\frac{B}{2}⟹2∠A+∠C=2180−2B
\implies \frac{\angle A+ \angle C}{2}=90\degree -\frac{B}{2}⟹2∠A+∠C=90°−2B
\implies tan\big(\frac{\angle A+ \angle C}{2}\big)=tan\big(90\degree -\frac{B}{2}\big)⟹tan(2∠A+∠C)=tan(90°−2B)
\implies tan\big(\frac{\angle A+ \angle C}{2}\big)= cot(\frac{B}{2})⟹tan(2∠A+∠C)=cot(2B)
/* Since ,
tan(90° - A) =cotA */
Similar questions
Social Sciences,
4 months ago
English,
4 months ago
Math,
9 months ago
Computer Science,
9 months ago
Physics,
1 year ago
Math,
1 year ago