Math, asked by SHOBEE, 11 months ago

TAN A is equal to 3/4 then cos 2A + sec2A=?​

Answers

Answered by skh2
1

Given that:-

tanA=\dfrac{3}{4}

\rule{200}{2}

To find :-

cos2A+sec2A

\rule{200}{2}

we know that :-

cos2x=\dfrac{1-tan^2x}{1+tan^2x}\\ \\ \\ \\sec2x=\dfrac{1+tan^2x}{1-tan^2x}}

\rule{200}{2}

thus:-

tanA=\dfrac{3}{4}\\ \\ \\tan^2A=(\dfrac{3}{4})^2\\ \\ \\ \implies tan^2A=\dfrac{9}{16}

\rule{200}{2}

Thus putting the values of tan^2x:-

\begin{aligned}cos2A+sec2A&=\dfrac{1-tan^2A}{1+tan^2A}+\dfrac{1+tan^2A}{1-tan^2A}}\\ \\ \\cos2A+sec2A&=\dfrac{(1-tan^2A)^2+(1+tan^2A)^2}{(1-tan^2A)(1+tan^2A)}\end{aligned}

\rule{200}{2}

=\dfrac{(1-tan^2A)^2+(1+tan^2A)^2}{1^2-(tan^2A)^2}\\ \\ \\=\dfrac{(1-\dfrac{9}{16})^2+(1+\dfrac{9}{16})^2}{1-(\dfrac{9}{16})^2}\\ \\ \\=\dfrac{674}{247}=2.7287...

\rule{200}{2}


SHOBEE: bro simpify the last before step
Similar questions