Math, asked by princelynn5, 11 months ago

tan A+secA=3find the value of sina​

Answers

Answered by CharmingPrince
10

\huge{\bigstar}{ \green{ \mathfrak{ \underline{ \underline{Question}}}}}{\bigstar}

□☆□☆□☆□☆□☆□☆□☆□☆□☆□

If \ tan A+secA=3 \ find \ the \ value\ of\\ sinA

□☆□☆□☆□☆□☆□☆□☆□☆□☆□

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

\huge{\bigstar}{ \green{ \mathfrak{ \underline{ \underline{Answer}}}}}{\bigstar}

\boxed{\red{\bold{Given:}}}

\purple {\implies tan A + secA =3}

\purple{\implies}\displaystyle \frac{sinA}{cosA} + \frac{1}{cosA} =3

\blue{\left(\because tanA = \displaystyle \frac{sinA}{cosA} \: and \: secA = \frac{1}{cosA} \right)}

\purple{\implies} \displaystyle \frac{1+sinA}{cosA} =3

\boxed{\red{\bold{Squaring\ both\ sides:}}}

\red{\implies \displaystyle \left( \frac{1+sinA}{cosA} \right)^2 = 3^2}

\red{\implies}\displaystyle \frac{1+sin^2 A +2 sinA}{cos^2A} = 9

\red{\implies}\displaystyle \frac{1+sin^2 A+ 2sinA}{1-sin^2A} = 9

\blue{(\because cos^2 A + sin^2A = 1)}

\boxed{\red{\bold{By \ cross \ multiply:}}}

\green{\implies 1+sin^2 A +2sinA=9(1-sin^2 A)}

\green{\implies}1 + sin^2 A + 2 sinA = 9 - 9 sin^2 A

\green{\implies}sin^2 A + 9 sin^2 A +2 sinA + 1 -9 = 0

\green{\implies}10 sin^2 A + 2 sinA - 8=0

\green{\implies}5 sin^2 A + sinA -4=0

\boxed{\red{\bold{Solving \ quadratic \ equation:}}}

\pink{\implies}5 sin^2 A + 5 sinA - 4sinA -4=0

\pink{\implies}5 sinA(sinA +1) -4(sinA + 1)=0

\pink{\implies}(sin A +1)(5 sinA -4)= 0

\green{\boxed{\implies{\boxed{sin A = -1  \: or \: sinA = \displaystyle \frac{4}{5}}}}}

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

Similar questions