Tan (a) + tan(60 + a) - tan(60-a) is equal to i) 3tan3a ii) cot3a iii)sin3a iv)cot3a
Answers
Answered by
1
Answer:
3 tan (a)
Step-by-step explanation:
Refer the attachment for the LCM step,
Next,
By using Trigonometric Identity,
Attachments:
Answered by
0
Answer:
let tan(a)=t
tan3a=t3
tan(a+b)=(tana+tanb)÷(1-tanatanb)
tan60=1.7(root three value approx)
- t+ (1.7 + t) ÷(1- 1.7t) - ((1.7 - t)÷(1+ 1.7t))
- t + {(8t) ÷(1-3t²) }
- by lcm
- (9t-3t³)÷(1-3t²)
- tan3a=(3tana -tan³a)÷(1 -3tan²a)
- so 1-3tan²a=(3tana -tan³a)÷(3tana) substitute in above equation
- (9t-3t³)÷{(3t - t³) ÷t3}
- {(9t-3t³)÷{(3t - t³)}× t3
- {3}×t3
- 3t3
- 3tan3a
Similar questions