Math, asked by poonamsinghstar96, 8 months ago

Tan (a) + tan(60 + a) - tan(60-a) is equal to i) 3tan3a ii) cot3a iii)sin3a iv)cot3a

Answers

Answered by Ranveer01
1

Answer:

3 tan (a)

Step-by-step explanation:

 \tan(a)  +  \tan(60  +  a)  -  \tan(60  -  a)

 \tan(60 + a)  =  \frac{ \tan(a) +  \tan(60)  }{1 -  \tan(a) \tan(60)  }

 =  \frac{ \tan(a) +  \sqrt{3}  }{1 -  \tan(a)  \sqrt{3} }

 \tan(60 - a)  =  \frac{ \sqrt{3} -  \tan(a)  }{1 +  \sqrt{3} \tan(a)  }

 \tan(a)  +  \tan(60  +  a)  -  \tan(60  -  a)

 =  \tan(a)  +  \frac{ \tan(a) +  \sqrt{3}  }{1 -  \tan(a) \sqrt{3}  }  -  \frac{ \tan(a)  -  \sqrt{3} }{1 +   \sqrt{3} \tan(a) }

Refer the attachment for the LCM step,

Next,

 =  \tan( a )  +  \frac{8 \tan(a) }{1 - 3 { \tan(a) }^{2} }

 =  \frac{9 \tan(a) - 3 { \tan(a) }^{3}  }{1 - 3 { \tan(a) }^{2} }

 = 3 \frac{3 \tan(a)  -   { \tan(a) }^{3}  }{1 -  { \tan(a) }^{2} }

By using Trigonometric Identity,

 = 3 \tan(3a)

Attachments:
Answered by venkatesh7711
0

Answer:

let tan(a)=t

tan3a=t3

tan(a+b)=(tana+tanb)÷(1-tanatanb)

tan60=1.7(root three value approx)

  • t+ (1.7 + t) ÷(1- 1.7t) - ((1.7 - t)÷(1+ 1.7t))
  • t + {(8t) ÷(1-3t²) }
  • by lcm
  • (9t-3t³)÷(1-3t²)
  • tan3a=(3tana -tan³a)÷(1 -3tan²a)
  • so 1-3tan²a=(3tana -tan³a)÷(3tana) substitute in above equation
  • (9t-3t³)÷{(3t - t³) ÷t3}
  • {(9t-3t³)÷{(3t - t³)}× t3
  • {3}×t3
  • 3t3
  • 3tan3a
Similar questions