Math, asked by sushantkr1977, 11 months ago


tan A + tan B.
1-tanA.tanB
sinA=1/√2 cos B=√3/2​

Answers

Answered by Hiteshbehera74
1

sina =  \frac{1}{ \sqrt{2} }  ;∴a = 45 \\ cosb =  \frac{ \sqrt{3} }{2} ;∴b = 30

Thus,

(tana + tanb)(1 - tana \times tanb) \\  = (tan45 + tan30)(1 - tan45 \times tan30) \\ = (1 +  \frac{1}{ \sqrt{3} } )(1 - 1 \times  \frac{1}{ \sqrt{3} } ) \\  = ( \frac{ \sqrt{3} + 1) }{ \sqrt{3} } )(1 -  \frac{1}{ \sqrt{3} } ) \\  =  \frac{( \sqrt{3} + 1)( \sqrt{3}   - 1)}{ \sqrt{3} \times  \sqrt{3}  }  \\  =  \frac{ {( \sqrt{3} )}^{2}  -  {(1)}^{2} }{3}  =  \frac{3 - 1}{3}  =  \frac{2}{3}

Similar questions