Math, asked by Pratham3214, 1 day ago

tanθ + cotθ = 2 find the value of tan²⁰¹⁹θ + cot²⁰²⁰θ = _____
 \tanθ +  \cotθ = 2  \\ find \: the \: value \: of \:  \\  \tan ^{2019} θ +  \cot ^{2020} θ = x

Answers

Answered by senboni123456
0

Answer:

Step-by-step explanation:

We have,

\tt{tan(\theta)+cot(\theta)=2}

\sf{\implies\,\dfrac{sin(\theta)}{cos(\theta)}+\dfrac{cos(\theta)}{sin(\theta)}=2}

\sf{\implies\,\dfrac{sin^2(\theta)+cos^2(\theta)}{cos(\theta)\,sin(\theta)}=2}

\sf{\implies\,\dfrac{1}{cos(\theta)\,sin(\theta)}=2}

\sf{\implies\,2cos(\theta)\,sin(\theta)=1}

\sf{\implies\,sin(2\theta)=1}

\sf{\implies\,2\theta=\dfrac{\pi}{2}}

\sf{\implies\,\theta=\dfrac{\pi}{4}}

Now,

\sf{tan^{2019}(\theta)+cot^{2020}(\theta)}

\sf{=tan^{2019}\left(\dfrac{\pi}{4}\right)+cot^{2020}\left(\dfrac{\pi}{4}\right)}

\sf{=1+1}

\sf{=2}

Similar questions