( tanβ+ cotβ ) ( tan²β - tanβ . cotβ + cot²β)
Answers
Answered by
4
Step-by-step explanation:
We need to prove cotβ−2tan(α−β)
Thus cotβ−2[
1+tanα.tanβ
tanα−tanβ
]=0
Taking LHS:
1−tanα.tanβ
1
[cotβ+tanα−2tanα+2tanβ]
1−tanα.tanβ
1
[cotβ−tanα+2tanβ]
=0
=RHS
Similar questions