Math, asked by khushal12323, 1 year ago


tan(\pi \div 4 + x \div 2)

Answers

Answered by sivaprasath
0

Answer:

sec \ x \ + \ tan \ x

Step-by-step explanation:

Given :

To find the value of :

tan(\frac{\pi}{4}+\frac{x}{2})

Solution :

We know that,

π = 180°,

i.e,  \frac{\pi}{4} = \frac{180}{4} = 45°

We know that,

tan 45° = 1,

Identities :

tan \ A = \frac{sin \ A}{cos \ A}

tan (A + B) =\frac{tan \ A \ + \ tan \ B}{1 \ - \ tan \ A \ tan \ B}

cos \ 2A =2cos^2 \ A - 1 = 1 \ - \ 2sin^2 \ A=cos^2 \ A - sin^2 \ A

tan^2 \ A + 1 = sec^2 \ A

___

tan(\frac{\pi}{4}+\frac{x}{2})

tan (\frac{\pi}{4}+\frac{x}{2}) =\frac{tan \frac{\pi}{4} \ + \ \tan \ \frac{x}{2}}{1 \ - \ tan \ \frac{\pi}{4} \ tan \ \frac{x}{2}}

tan (\frac{\pi}{4}+\frac{x}{2}) =\frac{1+ \ tan \ \frac{x}{2}}{1 \ - \ tan \ \frac{x}{2}}

multiplying & dividing by \frac{1 \ + \ tan \ \frac{x}{2}}{1 \ + \ tan \ \frac{x}{2}},

We get,

tan (\frac{\pi}{4}+\frac{x}{2}) =\frac{1 \ + \ tan \ \frac{x}{2}}{1 \ - \ tan \ \frac{x}{2}} \times \frac{1 \ + \ tan \ \frac{x}{2}}{1 \ + \ tan \ \frac{x}{2}}

tan (\frac{\pi}{4}+\frac{x}{2}) =\frac{(1 \ + \ tan \ \frac{x}{2})^2}{1 \ - \ tan^2 \ \frac{x}{2}}

tan (\frac{\pi}{4}+\frac{x}{2}) =\frac{1 \ + \ tan^2 \ \frac{x}{2} \ + \ 2 \ tan \ \frac{x}{2}}{\frac{cos^2 \ \frac{x}{2} - sin^2 \ \frac{x}{2}}{cos^2 \ \frac{x}{2}}}

tan (\frac{\pi}{4}+\frac{x}{2}) =\frac{sec^2 \ \frac{x}{2} \ + \ 2 \ (\frac{sin \ \frac{x}{2}}{cos \frac{x}{2}})}{\frac{cos^2 \ \frac{x}{2} - sin^2 \ \frac{x}{2}}{cos^2 \ \frac{x}{2}}}

tan (\frac{\pi}{4}+\frac{x}{2}) =\frac{\frac{1}{cos^2 \ \frac{x}{2}} \ + \ (\frac{2sin \ \frac{x}{2}}{cos \frac{x}{2}})}{\frac{cos^2 \ \frac{x}{2} - sin^2 \ \frac{x}{2}}{cos^2 \ \frac{x}{2}}}

tan (\frac{\pi}{4}+\frac{x}{2}) =\frac{\frac{1 \ + \ 2 \ sin \ \frac{x}{2} \ cos \ \frac{x}{2}}{cos^2 \frac{x}{2}}}{\frac{cos \ x}{cos^2 \ \frac{x}{2}}}

tan (\frac{\pi}{4}+\frac{x}{2})=\frac{\frac{1 \ + \ sin \ x}{cos^2 \frac{x}{2}}}{\frac{cos \ x}{cos^2 \ \frac{x}{2}}}

\frac{1 \ + \ sin \ x}{cos \ x}

\frac{1}{cos \ x} + \frac{sin \ x}{cos \ x} = sec \ x \ + \ tan \ x

Answered by Shruti1142
0

Answer:

drpok gli ka kutta........

Similar questions