Tan+sec-1/tan-sec+1=1+sin/cos
Answers
Answered by
3
Answer:
Step-by-step explanation:
tanA+secA-1)/(tanA-secA+1)=(1+sinA)/cos A
multiply LHS by cosA /cosA to get
(sinA+1-cosA) / (sinA-1+cosA)
multiply again by cosA/cosA to get
(sinA.cosA+cosA-cos^2A) / cosA(sinA-1+cosA)
= ( cosA(1+sinA) - (1-sin^2A) ) / cosA(sinA-1+cosA)
= ( cosA(1+sinA) - (1+sinA)(1-sinA) ) / cosA(sinA-1+cosA)
= ( (1+sinA)(cosA-1+sinA) ) / cosA(sinA-1+cosA)
= (1+sinA)/cosA
Answered by
1
Answer:
Hey Mate,
We have to prove LHS = RHS
Numerator = tan theta + sec theta -1
= sin theta/cos theta + 1/cos theta - 1
= (sin theta + 1)/cos theta -1
denominator = (sin theta -1)/cos theta +1
multiply both by cos theta
numerator = sin theta +1 - cos theta
= 2 sin theta/2 cos theta/2 + 2 sin^ theta/2
denominator = 2 sin theta/2 cos theta/2 - 2 sin ^2 theta/2
divide
number = (cos theta/2 + sin theta/2)/(cos theta/2 - sin theta/2)
= (cos theta/2 + sin theta/2)^2/(cos^2 theta/2- sin ^2 theta/2)
= (cos^2 theta/2+ sin^2 theta/2 + 2 cos theta/2 sin theta/2)/(cos theta)
= (1+ sin theta)/ cos theta
= sec theta+ tan theta
= 1/cos theta + sin theta / cos theta
= 1+ sin theta/ cos theta
Hence Proved
Hey Mate,
We have to prove LHS = RHS
Numerator = tan theta + sec theta -1
= sin theta/cos theta + 1/cos theta - 1
= (sin theta + 1)/cos theta -1
denominator = (sin theta -1)/cos theta +1
multiply both by cos theta
numerator = sin theta +1 - cos theta
= 2 sin theta/2 cos theta/2 + 2 sin^ theta/2
denominator = 2 sin theta/2 cos theta/2 - 2 sin ^2 theta/2
divide
number = (cos theta/2 + sin theta/2)/(cos theta/2 - sin theta/2)
= (cos theta/2 + sin theta/2)^2/(cos^2 theta/2- sin ^2 theta/2)
= (cos^2 theta/2+ sin^2 theta/2 + 2 cos theta/2 sin theta/2)/(cos theta)
= (1+ sin theta)/ cos theta
= sec theta+ tan theta
= 1/cos theta + sin theta / cos theta
= 1+ sin theta/ cos theta
Hence Proved
Similar questions