tan=sina-cosa/sina+cosa
Answers
Answer:
Tanθ= (Sinα-Cosα)/(Sinα+Cosα)Now squaring both sidesTan2θ= (Sinα-Cosα)2/(Sinα+Cosα)2We know that Sin2α+Cos2α=1 soTan2θ= (1-2SinαCosα)/(1+2SinαCosα)Now add 1 both sides to use this identity Tan2θ+1= Sec2θTan2θ+1=(1-2SinαCosα)/(1+2SinαCosα) +1Take LCMSec2θ= (1-2SinαCosα+1+2SinαCosα)/(1+2SinαCosα)Now after subtractingSec2θ=2/(1+2SinαCosα)(1+2SinαCosα)=2/Sec2θNow we can write 1 as Sin2α+Cos2αSo it becomes (Sinα+Cosα)2=2/Sec2θWhere Sec2θ=1/Cos2θSo(Sinα+Cosα)2=2Cos2θTaking root both sides Sinα+Cosα=√2CosθAnswer.
Tanx = (Sinα-Cosα)/(Sinα+Cosα)
Now squaring both sides
Tan^2x= (Sinα-Cosa)^2/(Sinα+Cosα)^2
We know that
Sin^2α+Cos^2α=1
so
Tan^2x= (1-2SinαCosα)/(1+2SinαCosα)
Now add 1 both sides
Tan^2x+1= Sec^2xTan^2x+1=(1-2SinαCosα)/(1+2SinαCosα) +1
Take LCM
Sec^2x= (1-2SinαCosα+1+2SinαCosα)/(1+2SinαCosα)
Now after subtracting
Sec^2x=2/(1+2SinαCosα)(1+2SinαCosα)=2/Sec2x
Now we can write 1 as Sin^2α+Cos^2α
So it becomes
(Sinα+Cosα)^2=2/Sec^2x
Where
Sec^2x=1/Cos^2c
So
(Sinα+Cosα)^2=2Cos^2x
Taking root both sides
Sinα+Cosα=√2Cosx Answer
Hope it's helpful for you