Math, asked by justin58, 1 year ago

tan square A / 1+ tan square A + cot square A /1+ cot square A = 1 ...... solve this

Answers

Answered by kuldeep1823
38
this is the right answer bro..
Attachments:
Answered by mysticd
25

 LHS = \frac{tan^{2} A}{1 + tan^{2}A} + \frac{cot^{2} A}{ 1 + cot^{2} A}

 = \frac{tan^{2} A}{sec^{2}A} + \frac{cot^{2} A}{ cosec^{2} A}

______________________

By Trigonometric Identities :

  1. 1 + tan²A = sec²A
  2. 1 + cot²A = cosec²A
  3. sin² A + cos² A = 1

______________________

 =\frac{\frac{sin^{2} A}{cos^{2} A}}{ \frac{1}{cos^{2} A } }+ \frac{\frac{cos^{2} A}{sin^{2} A}}{ \frac{1}{sin^{2} A } }

 = sin^{2} A + cos^{2} A \\= 1 \\= RHS

 Hence \:Proved

•••♪

Similar questions