tan+tan(90-thita)=sec(sec90-thita)
Answers
Answered by
12
To prove
tan∅ + tan(90 - ∅) = sec∅sec(90 - ∅)
Taking LHS
tan∅ + tan(90 - ∅)
→ tan∅ + cot∅
(Since, tan(90 - ∅) = cot∅)
→ tan∅ + 1/tan∅
(cot∅ = 1/tan∅)
→
(By taking LCM)
→ sec²∅/tan∅
(since, tan²∅ + 1 = sec²∅)
Now, tan∅ = sec∅/cosec∅, so put tan∅ as sec∅/cosec∅
→
→
→
= sec∅cosec∅
(cancelling sec∅ by sec²∅)
→ sec∅sec(90 - ∅)
(cosec∅ = sec(90 - ∅)
Hence proved.
Similar questions