tan theta /1 - cot theta +cot theta /1 - tan theta =1 +tan theta +cot theta :prove it
Anonymous:
Help me out
Answers
Answered by
9
Step-by-step explanation:
Please check the question .
The possible answer is as follows
tanθ/1- cotθ + cotθ/1-tanθ = 1+tanθ+cotθ
Let us take L.H.s
tanθ/1- cotθ + cotθ/1-tanθ
=[sinθ/cosθ/ 1- (cosθ/sinθ)] + [cosθ/1- (sinθ/cosθ)]
=sin²θ/cosθ( sinθ-cosθ) + cos²θ/ sinθ(sinθ-cosθ)
=sin³θ -cos³θ/cosθsinθ(sinθ-cosθ)
∴a³-b³= (a-b)[a²+b²+ab]
=(sinθ-cosθ)[sin²θ+cos²θ+sinθcosθ]/cosθsinθ(sinθ-cosθ)
=1+ sinθcosθ/cosθsinθ
= 1+secθcosecθ≠L.H.S
hence question should be tanθ/1- cotθ + cotθ/1-tanθ =1+secθcosecθ
Answered by
12
Similar questions