Math, asked by nanddesai1967, 3 months ago

tan theta =13/14 , find the value of cot theta​

Answers

Answered by RvChaudharY50
7

Given :-

  • tan θ = (13/14)

To Find :-

  • cot θ = ?

Solution :-

we know that,

  • sin θ = Perpendicular/Hypotenuse
  • cos θ = Base/Hypotenuse
  • tan θ = Perpendicular/Base
  • cosec θ = Hypotenuse/Perpendicular
  • sec θ = Hypotenuse/Base
  • cot θ = Base/Perpendicular.

so,

→ tan θ = (13/14)

→ Perpendicular/Base = (13/14)

then,

  • Perpendicular = 13
  • Base = 14 .

therefore,

→ cot θ = Base/Perpendicular

→ cot θ = (14/13) (Ans.)

Learn more :-

in triangle ABC,prove that cosA/2+cosB/2+cosC/2=4cos(π-A/4)cos(π-B/4)cos(π-C/4)

https://brainly.in/question/28633699

a^3cos(B-C)+b^3cos(C-A)+c^3cos(A-B)=3abc

https://brainly.in/question/13088068

Answered by pulakmath007
17

SOLUTION

GIVEN

 \displaystyle \sf{ \tan \theta =  \frac{13}{14} }

FORMULA TO BE IMPLEMENTED

Relation Between tanθ and cotθ

 \displaystyle \sf{ \cot \theta } \displaystyle \sf{  =  \frac{1}{\tan \theta}   }

TO DETERMINE

 \displaystyle \sf{ \cot \theta  }

EVALUATION

Here it is given that

 \displaystyle \sf{ \tan \theta =  \frac{13}{14} }

Hence

 \displaystyle \sf{ \cot \theta }

 \displaystyle \sf{  =  \frac{1}{\tan \theta}   }

 \displaystyle \sf{  =  \frac{1}{  \displaystyle \sf{\frac{13}{14} }}   }

 \displaystyle \sf{  = \frac{14}{13}  }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. if 10 cosA - 11 Sin A = 12, Show that 10 SinA + 11 CosA = ± √77

https://brainly.in/question/30595765

2. If 270° <teta< 360°and cos teta=1/4 find teta/2

https://brainly.in/question/29137185

Similar questions