Math, asked by atharvwali12, 9 months ago

tan theta = 2+ root 3. Find Theta

Answers

Answered by studyrankers235
1

Answer:

Step-by-step explanation:

2 + \sqrt{3} = \frac{1 + \sqrt{3} }{1 - \sqrt{3}} = \frac{tan(\pi /4) + tan (\pi /6)}{1 - tan(\pi/4)tan(\pi/6)} = tan( \frac{\pi}{4} + \frac{\pi}{6}) = tan ( \frac{5\pi}{12} )

therefore, \theta = \frac{5\pi}{12} (Hence proved)

Answered by payalchatterje
2

Answer:

Required value of theta is

\frac{5\pi}{12}

Step-by-step explanation:

Given,

 \tan(\theta)  = 2 +  \sqrt{3}

Now,

2 +  \sqrt{3}  =  \frac{1 +  \sqrt{3} }{1 -  \sqrt{3} }  \\  =  \frac{1 +  \sqrt{3} }{1 -  \sqrt{3} }  \\  =  \frac{1 +  \sqrt{3} }{1 - 1 \times  \sqrt{3} }  \\  =  \frac{ tan\frac{\pi}{4}  +  tan\frac{\pi}{6} }{1 -tan \frac{\pi}{4}   \times tan \frac{\pi}{6} }  \\  =  \tan( \frac{\pi}{4}  +  \frac{\pi}{6} )  \\  =  \tan( \frac{(3 + 2)\pi}{12} )  \\  =  \tan( \frac{5\pi}{12} )

So,

 \tan( \theta)  =  \tan( \frac{5\pi}{12} )  \\  \theta =  \frac{5\pi}{12}

Therefore required value of theta is \frac{5\pi}{12}

Here applied formula is  \tan(x + y)  =  \frac{ \tan(x)  +  \tan(y) }{1 -  \tan(x)  \tan(y) }

Some important Trigonometry formulas,

sin(x)  =  \cos(\frac{\pi}{2}  - x)  \\  \tan(x)  =  \cot(\frac{\pi}{2}  - x)  \\  \sec(x)  =  \csc(\frac{\pi}{2}  - x)  \\ \cos(x)  =  \sin(\frac{\pi}{2}  - x)  \\ \cot(x)  =  \tan(\frac{\pi}{2}  - x)  \\ \csc(x)  =  \sec(\frac{\pi}{2}  - x)

know more about Trigonometry,

https://brainly.in/question/8632966

https://brainly.in/question/11371684

#SPJ3

Similar questions