Math, asked by sachinmishra2329, 5 months ago

tan theta=4/3 ho toh darsaiye root 1-sin theta/1+sin theta + root 1+sin theta 1-sin theta=10/3










Answers

Answered by mathdude500
1

\huge\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Answer}}}}}}}} \\ \large\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Your~answer↓}}}}}}}}

Given :-

\large\bold\red{tanθ \:  =  \frac{4}{3} }

To prove :-

\large\bold\green{  \sqrt{ \frac{1 - sinθ}{1 + sinθ} } +  \sqrt{ \frac{1 + sinθ}{1 - sinθ} }   =  \frac{10}{3}  }

\large\bold\green{  \sqrt{ \frac{1 - sinθ}{1 + sinθ} } +  \sqrt{ \frac{1 + sinθ}{1 - sinθ} }    } \\ on \: taking \: lcm \\ \large\bold\green{  = \frac{1 - sinθ \:  + 1 + sinθ}{ \sqrt{(1 - sinθ)(1 + sinθ)} } } \\ \large\bold\green{ =  \frac{2}{ \sqrt{1 -  {sin}^{2} θ} } } \\ \large\bold\green{ =  \frac{2}{ \sqrt{ {cos}^{2}θ } } } \\ \large\bold\green{ =  \frac{2}{cosθ} } \\ \large\bold\red{ = 2secθ} \\  \large\bold\green{ = 2 \sqrt{1 +  {tan}^{2}θ } } \\ \large\bold\green{ = 2 \sqrt{1 +  {( \frac{4}{3} )}^{2} } } \\ \large\bold\green{ = 2 \sqrt{ \frac{9 + 16}{9} } } \\ \large\bold\green{ = 2 \times  \frac{5}{3} } \\ \large\bold\green{ =  \frac{10}{3} }

\large\bold\green{♧Hence, proved.♧}

\red{\textsf{(✪MARK BRAINLIEST✿)}} \\ \huge\fcolorbox{aqua}{aqua}{\red{FolloW ME}}

Answered by suman8615
1

Answer:10\3]

is the answer...

Similar questions