tan theta = a/b then find Cost theta + sin theta / Cos theta - sin theta
Answers
Answered by
0
The value of
is determined by dividing the numerator and denominator by \cos \thetacosθ
We know that ![\tan \theta = \frac { \mathrm { a } } { \mathrm { b } } \tan \theta = \frac { \mathrm { a } } { \mathrm { b } }](https://tex.z-dn.net/?f=%5Ctan+%5Ctheta+%3D+%5Cfrac+%7B+%5Cmathrm+%7B+a+%7D+%7D+%7B+%5Cmathrm+%7B+b+%7D+%7D)
Thus, the value of ![\frac { \cos \theta + \sin \theta } { \cos \theta - \sin \theta } = \frac { a + b } { b - a } \frac { \cos \theta + \sin \theta } { \cos \theta - \sin \theta } = \frac { a + b } { b - a }](https://tex.z-dn.net/?f=%5Cfrac+%7B+%5Ccos+%5Ctheta+%2B+%5Csin+%5Ctheta+%7D+%7B+%5Ccos+%5Ctheta+-+%5Csin+%5Ctheta+%7D+%3D+%5Cfrac+%7B+a+%2B+b+%7D+%7B+b+-+a+%7D)
Similar questions