Math, asked by Abhialne7071, 9 months ago

tan theta by sec theta minus 1 is equal to tan theta + sec theta + 1 by tan theta + sec Theta - 1

Answers

Answered by Anonymous
108

AnswEr :

To Prove :

 \Large \frac{ \tan( \alpha ) }{ \sec( \alpha )  - 1}  =  \frac{ \tan( \alpha )  +  \sec( \alpha )  + 1}{\tan( \alpha )  +  \sec( \alpha )   -  1}

Proof :

\dfrac{ \tan( \alpha ) }{ \sec( \alpha )  - 1}  =  \dfrac{ \tan( \alpha )  +  \sec( \alpha )  + 1}{\tan( \alpha )  +  \sec( \alpha )   -  1}

I'm taking RHS to Prove this :

 \longrightarrow\dfrac{ \tan( \alpha )  +  \sec( \alpha )  + 1}{\tan( \alpha )  +  \sec( \alpha )   -  1}

\longrightarrow\dfrac{ (\tan( \alpha ))  + ( \sec( \alpha )  + 1)}{(\tan( \alpha ))  + ( \sec( \alpha )   -  1)}

\longrightarrow\dfrac{ (\tan( \alpha ))  + ( \sec( \alpha )  + 1)}{(\tan( \alpha ))  + ( \sec( \alpha )   -  1)}  \times 1

\small\longrightarrow\dfrac{ (\tan( \alpha ))  + ( \sec( \alpha )  + 1)}{(\tan( \alpha ))  + ( \sec( \alpha )   -  1)}  \times \dfrac{ (\tan( \alpha ))   -  ( \sec( \alpha )  - 1)}{(\tan( \alpha ))   -  ( \sec( \alpha )   -  1)}

 \longrightarrow \dfrac{( \tan( \alpha )) + ( \sec( \alpha ) + 1)( \tan( \alpha ) )  -  (\sec( \alpha )  - 1) }{ ( \tan ( \alpha )  +  ( \sec( \alpha ) - 1) ( \tan ( \alpha )   -   ( \sec( \alpha ) - 1)}

  • (a + b)(a - c) = a² - a(c - b) - bc
  • (a + b)(a - b) = a² - b²

 \longrightarrow \small \dfrac{ \tan^{2} ( \alpha )  -  \tan( \alpha )(  \cancel{\sec( \alpha )}   - 1 -   \cancel{\sec( \alpha )}  - 1) - ( \sec ^{2} ( \alpha ) - 1) }{ \tan^{2} ( \alpha )  - ( \sec( \alpha ) - 1)^{2}  }

 \longrightarrow \dfrac{  \cancel{\tan^{2} ( \alpha )} + 2 \tan( \alpha ) -  \cancel{\tan^{2} ( \alpha )} }{\tan^{2}( \alpha ) - ( \sec^{2} ( \alpha )  + 1 - 2  \sec( \alpha ) ) }

 \longrightarrow \dfrac{ 2 \tan( \alpha )}{\tan^{2}( \alpha ) - \sec^{2} ( \alpha )   - 1  +  2  \sec( \alpha )  }

  • taking Minus Common in denominator

 \longrightarrow \dfrac{ 2 \tan( \alpha )}{ - ( - \tan^{2}( \alpha )  +  \sec^{2} ( \alpha )    + 1   -   2  \sec( \alpha ) ) }

 \longrightarrow \dfrac{ 2 \tan( \alpha )}{ - (( \sec^{2} ( \alpha )  - \tan^{2}( \alpha ) )  + 1   -   2  \sec( \alpha ) ) }

  • sec² θ - tan² θ = 1

 \longrightarrow \dfrac{ 2 \tan( \alpha )}{ - (1+ 1   -   2  \sec( \alpha ) ) }

 \longrightarrow \dfrac{ 2 \tan( \alpha )}{ - (2   -   2  \sec( \alpha ) ) }

 \longrightarrow \dfrac{ 2 \tan( \alpha )}{ -2  +  2  \sec( \alpha) }

 \longrightarrow \dfrac{ 2 \tan( \alpha )}{ 2  \sec( \alpha )  - 2 }

 \longrightarrow \dfrac{  \cancel2 \tan( \alpha )}{ \cancel2 (\sec( \alpha )  - 1)}

 \longrightarrow  \large{\dfrac{ \tan( \alpha )}{\sec( \alpha )  - 1}}  \: \:  \:  \:  \:  \:   \:  \:   \small\bf{ \underline{Hence \:Proved}}

Similar questions