Math, asked by sow61, 1 year ago

tan theta+sectheta_1÷tantheta_sec theta+1=1+sintheta÷costheta

Answers

Answered by Pitymys
0

Here  LHS=\frac{\tan \theta +\sec \theta -1}{\tan \theta -\sec \theta +1} \\<br />LHS=\frac{\tan \theta +\sec \theta -1}{\tan \theta -(\sec \theta -1)} \\<br />LHS=\frac{(\tan \theta +\sec \theta -1)(\tan \theta +\sec \theta -1)}{(\tan \theta -(\sec \theta -1))(\tan \theta +\sec \theta -1)} \\<br />LHS=\frac{\tan^2 \theta +sec^2 \theta-2 \sec \theta +1+2\tan \theta (\sec \theta -1)}{\tan^2 \theta -\sec^2 \theta +2\sec \theta -1}

 LHS=\frac{2\sec^2 \theta-2 \sec \theta +2\tan \theta (\sec \theta -1)}{2\sec \theta -2} \\<br />LHS=\frac{2( \sec \theta +\tan \theta) (\sec \theta -1)}{2(\sec \theta -1)} \\<br />LHS=\sec \theta +\tan \theta\\<br />LHS=\frac{1+\sin \theta}{\cos  \theta}=RHS<br /><br />

The proof is complete.


Similar questions