tan x + cot x = 2 , cos x = ?
Answers
Answer:
In this question Tan and cot have to have same value
Step-by-step explanation:
So the value in which tan and cot will be equal is 45 that is pi/4
Which is equal to 1
So tan 45+ cot 45 is equal to 2
So cot 45 is 1
Answer:
1 / √2.
Step-by-step explanation:
From the properties of trigonometry :
tanA = sinA / cosA
cotA = cosA / sinA
sin^2 A + cos^2 A = 1
Here,
⇒ tan x + cot x = 2
⇒ ( sinx / cosx ) + ( cosx / sinx ) = 2
⇒ ( sin^2 x + cos^2 x ) / sinx.cosx = 2
⇒ 1 / sinx.cosx = 2
⇒ 1 = 2.sinx.cosx
Square on both sides :
⇒ 1^2 = ( 2sinx.cosx )^2
⇒ 1 = 4.sin^2 x . cos^2 x
⇒ ( 1 / 4 ) = ( 1 - cos^2 x )cos^2 x
⇒ 1 / 4 = cos^2 x - cos^4 x
let cos^2 x = a
⇒ 1 / 4 = a - a^2
⇒ 1 = 4a - 4a^2
⇒ 4a^2 - 4a + 1 = 0
⇒ ( 2a - 1 )^2 = 0
⇒ a = 1 /2 ⇒ cos^2 x = 1 / 2
⇒ cosx = 1 /√2
Hence the required value of cosx is 1 / √2