Math, asked by pavleen13, 8 months ago

tan x +tan (π/3+x)+tan (2π/3+x) =3​

Answers

Answered by EnchantedBoy
0

Your question is -------------If tan x +tan(x+π/3)+tan(x+2π/3)=3

prove that tan 3x=1

we know:tan (A+B)=[{tanA+tanB}/{1-tanA-tanB}]

therefore,

⇒tanx+{tanx+ tanπ/3}/{1-tanx-tanπ/3}+{tanx+tan2π/3}/{1-tanx-tan2π/3}=3

⇒tanx+{tanx+√3}/{1-√3tanx}+{tanx-√3}{1+√3tanx}=3

⇒tanx+(tanx+√3)(1+√3tanx)+(tanx-√3)(1-√3tanx)/(1-√3tanx)(1+√3tanx)=3

⇒tanx+{tanx+√3tan²x+√3+3tanx+tanx-√3tan²x-√3+3tanx}/{1-3tan²x}=3

⇒tanx+{8tanx}/{1-3tan²x}=3

⇒{tanx-3tan²x+8tanx}/{1-3tan²x}=3

⇒{9tanx-3tan²x}/{1-3tan²x}=3

⇒3{tanx-3tan²x}/{1-3tan²x}=3

We know:tan3A={tanA-3tan²A}/{1-3tan²A}

therefore,tan3x=3/3

tan3x=1

hence proved

Answered by Uniquedosti00017
0

Answer:

see the attachment for the solution...

Attachments:
Similar questions