Math, asked by kkrithikaanand, 11 months ago

tan x° = tan30°/ 1 + tan^2 30° [tan25°cot25°+ tan^2 45° / cot^2 60°]. Find x​

Answers

Answered by Swarup1998
9

Required value of x is 60°

\underline{\mathbb{EXPLANATION}}\bold{:}

\textsf{Given,}

\small{\mathsf{tanx^{\circ}=\frac{tan30^{\circ}}{1+tan^{2}30^{\circ}}\times \bigg[tan25^{\circ}\:cot25^{\circ}+\frac{tan^{2}45^{\circ}}{cot^{2}60^{\circ}}\bigg]}}

\small{\mathsf{=\frac{tan30^{\circ}}{1+tan^{2}30^{\circ}}\times \bigg[1+\frac{tan^{2}45^{\circ}}{cot^{2}60^{\circ}}\bigg]\:[\because tan\theta\:cot\theta=1]}}

\mathsf{=\frac{tan30^{\circ}}{1+tan^{2}30^{\circ}}\times\big[1+tan^{2}45^{\circ}\:tan^{2}60^{\circ}\big]}

\mathsf{=\frac{tan30^{\circ}}{1+tan^{2}30^{\circ}}\times\big[1+(tan45^{\circ}\:tan60^{\circ})^{2}\big]}

\mathsf{=\frac{\frac{1}{\sqrt{3}}}{1+(\frac{1}{\sqrt{3}})^{2}}\times\big[1+(1\times \sqrt{3})^{2}\big]}

\mathsf{=\frac{\frac{1}{\sqrt{3}}}{1+\frac{1}{3}}\times\big[1+(\sqrt{3})^{2}\big]}

\mathsf{=\frac{\frac{1}{\sqrt{3}}}{\frac{3+1}{3}}\times\big[1+3\big]}

\mathsf{=\frac{1}{\sqrt{3}}\times\frac{3}{4}\times 4}

\mathsf{=\sqrt{3}=tan60^{\circ}}

\implies \mathsf{tanx^{\circ}=tan60^{\circ}}

\implies \boxed{\bold{x=60^{\circ}}}

\therefore \mathsf{the </p><p>\:required\:value\:of\:x\:is\:60^{\circ}.}

\underline{\mathbb{TRIGONOMETRY}}\bold{:}

\quad\quad\quad \mathsf{1.\:tan30^{\circ}=\frac{1}{\sqrt{3}}}

\quad\quad\quad \mathsf{2.\:tan45^{\circ}=1}

\quad\quad\quad \mathsf{3.\:tan60^{\circ}=\sqrt{3}}

\underline{\mathbb{RELATED\:PROBLEMS}}\bold{:}

• What is a value of tan36 degree in trigonometry? - https://brainly.in/question/5927670

• Find the value of tan 15° tan 30° tan 45° tan 60° tan 75° - https://brainly.in/question/5224926

Similar questions