Math, asked by azizalasha, 11 months ago

tan(y° ) = (4cos² 9° −3)(4cos² 27° −3)

If y satisfy the equation above, find y where 0 < y < 90.
Clarification: Angles are measured in degrees.

Answers

Answered by IamIronMan0
3

Answer:

y = 9

We know

 \cos(3x)  = 4 \cos {}^{3} (x)  - 3 \cos(x)  \\ \\   \cos(3x)  =  \cos(x) (4 \cos {}^{2} (x)  - 3) \\  \\ for \:  \cos(x)  \neq0 \:  \\  4 \cos {}^{2} (x)  - 3 =  \frac{ \cos(3x) }{ \cos(x) }  \\  \\

So now RHS is

(4 \cos {}^{2} (9)  - 3)(4 \cos {}^{2} (27)  - 3) \\  \\  =  \frac{ \cos(3 \times 9) }{ \cos(9) }  \times  \frac{ \cos(27 \times 3) }{ \cos(27) }  \\ \\   =  \frac{ \cos(81) }{ \cos(9) }  \\  \\  =   \frac{ \sin(9) }{ \cos(9) }  \\  \\  =  \tan(9)  = tany

So

y = 9°

Answered by Anonymous
1

Step-by-step explanation:

see the attachment

inbox me plz,so that I can ask any doubt from u.

plzzzzzzzzzzzz

Attachments:
Similar questions