Math, asked by 3tgamer2005, 2 months ago

tan2 theta/tan2theta-1 + cosec2 theta /sec2 theta - cosec2 theta = 1/sin2 theta - cos2 theta

Answers

Answered by sandy1816
3

\huge\underline\bold\red{★Answer★}

 \frac{ {tan}^{2}  \theta }{ {tan}^{2} \theta  - 1 }  +  \frac{ {cosec}^{2}  \theta }{ {sec}^{2}  \theta  -  {cosec}^{2}  \theta }  \\  =  \frac{ \frac{ {sin}^{2} \theta }{ {cos}^{2} \theta } }{ \frac{ {sin}^{2} \theta  -  {cos}^{2}   \theta }{ {cos}^{2} \theta  } }  +   \frac{ \frac{1}{ {sin}^{2} \theta  } }{ \frac{1}{ {cos}^{2}  \theta }  -  \frac{1}{ {sin}^{2}  \theta } }  \\  =  \frac{ {sin}^{2} \theta  }{ {sin}^{2} \theta  -  {cos}^{2}  \theta  }  +  \frac{1}{ {sin}^{2}  \theta }  \times  \frac{ {sin}^{2} \theta  {cos}^{2} \theta  }{ {sin}^{2}  \theta  -  {cos}^{2}  \theta }  \\  =  \frac{ {sin}^{2}  \theta }{ {sin}^{2} \theta  -  {cos}^{2}   \theta }  +  \frac{ {cos}^{2} \theta  }{ {sin}^{2} \theta  -  {cos}^{2} \theta   }  \\  =  \frac{ {sin}^{2} \theta  +  {cos}^{2}  \theta  }{ {sin}^{2}  \theta  -  {cos}^{2}  \theta }  \\  =  \frac{1}{ {sin}^{2}  \theta  -  {cos}^{2}  \theta }

Similar questions