Tan22+tan 23+tan22tan23=1
Prove
Answers
Answered by
34
We know that,
tan45° = 1
⇒ tan(22° + 23°) = 1
⇒ (tan22° + tan23°)/(1 - tan22° tan23°)=1,
using the identity
tan(A + B) = (tanA + tanB)/(1 - tanA tanB)
⇒ tan22° + tan23° = 1 - tan22° tan23°
⇒ tan22° + tan23° + tan22° tan23° = 1
Hence, proved.
#
Similar questions